-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
219 lines (149 loc) · 7.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 23 13:10:29 2016
@author: William
"""
import IRMAD as im
#==============================================================================
# GDAL install Error handler
#==============================================================================
#gdal.PushErrorHandler(gfh.gdal_error_handler)
#==============================================================================
# Load images
#==============================================================================
inputpath = 'Input/'
#inputpath = '../Input/mergedDataset/VirtualSpectral07/'
#Xfile = inputpath + 'mergedDataset/VirtualSpectral07/Spectral14LRedit.tif'
#Yfile = inputpath + 'mergedDataset/VirtualSpectral07/Spectral14LR.tif'
#Xfile = inputpath + 'Praestemosen/PM_RGB_14_400mm_GST.tif'
#Yfile = inputpath + 'Praestemosen/PM_RGB_16_400mm_NIRAS.tif'
#Xfile = inputpath + 'Praestemosen/PM_RGB_14_100mm_GST.tif'
#Yfile = inputpath + 'Praestemosen/PM_RGB_16_100mm_NIRAS.tif'
#------------------------------------------------------------------------------
#initialize the combined IRMAD method
#------------------------------------------------------------------------------
Xfile = inputpath + 'Praestemosen/PM_COM_14_400mm.tif'
Yfile = inputpath + 'Praestemosen/PM_COM_16_400mm.tif'
dirpath = 'CD_Combined/'
CDCombined = im.ChangeDetection(dirpath,Xfile,Yfile)
#------------------------------------------------------------------------------
#initialize the binary and/or method
#------------------------------------------------------------------------------
Xfile = inputpath + 'Praestemosen/PM_RGB_14_400mm_GST.tif'
Yfile = inputpath + 'Praestemosen/PM_RGB_16_400mm_NIRAS.tif'
dirpath = 'CD_BinaryAndOr/'
CDBinaryAndOR = im.ChangeDetection(dirpath,Xfile,Yfile)
#==============================================================================
# Create DSM png files
#==============================================================================
#XDSM = inputpath + 'Praestemosen/PM_DSM_14_400mm_GST2.tif'
#YDSM = inputpath + 'Praestemosen/PM_DSM_16_400mm_NIRAS2.tif'
#gfh.TIFF2PNG(XDSM,'PNG/xDSM.png','Fit')
#gfh.TIFF2PNG(YDSM,'PNG/yDSM.png','Fit')
#==============================================================================
# convert ROI polygon to UTM
#==============================================================================
#shapein = inputpath + 'SelectPolygon/Praestemosen2.shp'
#shpfn = inputpath + 'SelectPolygon/Praestemosen2UTM.shp'
#gfh.ShapeProjConvert(shapein,'UTM32',shpfn)
#==============================================================================
# Load ROI polygon and create binary ROI image
#==============================================================================
shpfn = inputpath + 'SelectPolygon/Praestemosen2UTM.shp'
CDCombined.CreateROIfromSHP(shpfn)
CDBinaryAndOR.CreateROIfromSHP(shpfn)
#==============================================================================
# Run IRMAD
#==============================================================================
it = 10
CDCombined.IRMAD(it,converg = 0.01)
CDBinaryAndOR.IRMAD(it, converg = 0.01)
#==============================================================================
# Generate IRMAD PNG-files
#==============================================================================
#CD_Combined
CDCombined.printPNGfiles()
#CDCombined.plotRhoIterations()
#CDCombined.PlotEigenvectors()
#CD_BinaryAndOr
CDBinaryAndOR.printPNGfiles()
#CDBinaryAndOR.plotRhoIterations()
#CDBinaryAndOR.PlotEigenvectors()
#==============================================================================
# change image using threshold
#==============================================================================
#CD_Combined
threshold = 4000
structsize = 2
beta = 10
CDCombined.ChiThreshold(threshold)
CDCombined.MRFChange(threshold, beta)
CDCombined.GrayMathMorphOpen(threshold,structsize)
CDCombined.Chi2ChangeDetectionInteractive()
#CD_BinaryAndOr
threshold = 16.266236196238129 # chi² (0.999,df = 3)
threshold = 20
structsize = 2
beta = 10
CDBinaryAndOR.ChiThreshold(threshold)
CDBinaryAndOR.MRFChange(threshold, beta)
CDBinaryAndOR.GrayMathMorphOpen(threshold,structsize)
#CDBinaryAndOR.Chi2ChangeDetectionInteractive()
#==============================================================================
# Include DSM in CD_BinaryAndOr
#==============================================================================
DSM14 = inputpath + 'Praestemosen/PM_DSM_14_400mm_GST.tif'
DSM16 = inputpath + 'Praestemosen/PM_DSM_16_400mm_NIRAS.tif'
CDBinaryAndOR.DSMCD(DSM14,DSM16)
CDBinaryAndOR.DSMdifference(DSM14,DSM16)
CDBinaryAndOR.DSMdiffthresh()
#CDBinaryAndOR.Boolean('AND')
#CDBinaryAndOR.Boolean('OR')
#==============================================================================
# Filter objects by area
#==============================================================================
Area = 50
distanceTo = None
shape = 'combined_CD/Vector_input_ex/skel/skel.shp'
CDCombined.ChangeGeometryfilter(Area,distanceTo,shape)
#==============================================================================
# """different plots"""
#==============================================================================
#plot MAD Gaussian PDF
#CDCombined.PlotMADpdf()
# chi-squared PDF
#CDCombined.PlotChi2()
#==============================================================================
# create histograms of input and Canonical variates
#==============================================================================
#H = CDCombined.WeightetInputHistogram()
#H = CDBinaryAndOR.WeightetInputHistogram()
#H2 = CDCombined.CanonicalVariatesHistogram()
#==============================================================================
# Correlation MAD with Original vars
#==============================================================================
#Cx = CDCombined.MADCorrInput()
#==============================================================================
# Create PNG spippets for report
#==============================================================================
#R = CDCombined.Cov2Corr(1)
#==============================================================================
# generate matrices
#==============================================================================
#CDCombined.InputAndCVCorr()
#CDCombined.InputAndMADCorr()
"""
path = '/home/grusinator/Dropbox/DTU/Speciale/Programming/IRMAD/Input/Cutouts/'
nr = '01'
im.TIFF2PNG(path + 'RGB14-' + nr + '.tif',
path + 'PNG/RGB14-' + nr + '.png','Fit')
im.TIFF2PNG(path + 'RGB16-' + nr + '.tif',
path + 'PNG/RGB16-' + nr + '.png','Fit')
im.TIFF2PNG(path + 'DSM14-' + nr + '.tif',
path + 'PNG/DSM14-' + nr + '.png','Fit')
im.TIFF2PNG(path + 'DSM16-' + nr + '.tif',
path + 'PNG/DSM16-' + nr + '.png','Fit')
"""
#------------------------------------------------------------------------------
print 'Main script done!'
#------------------------------------------------------------------------------