-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
274 lines (248 loc) · 11.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import pandas as pd
from log import set_up_logger
from parser import *
from eval import *
from utils import *
from train import *
import os
from module import HIT
from graph import NeighborFinder
import resource
from sklearn.preprocessing import scale
from histogram import plot_hist
import time
args, sys_argv = get_args()
BATCH_SIZE = args.bs
NUM_NEIGHBORS = args.n_degree
NUM_EPOCH = args.n_epoch
ATTN_NUM_HEADS = args.attn_n_head
DROP_OUT = args.drop_out
GPU = args.gpu
USE_TIME = args.time
ATTN_AGG_METHOD = args.attn_agg_method
ATTN_MODE = args.attn_mode
DATA = args.data
NUM_LAYER = args.n_layer
if args.time_prediction_type > 0:
LEARNING_RATE = 1e-3
else:
LEARNING_RATE = args.lr
POS_ENC = args.pos_enc
POS_DIM = args.pos_dim
WALK_N_HEAD = args.walk_n_head
WALK_MUTUAL = args.walk_mutual
TOLERANCE = args.tolerance
CPU_CORES = args.cpu_cores
NGH_CACHE = args.ngh_cache
VERBOSITY = args.verbosity
interpretation = args.interpretation
interpretation_type = args.interpretation_type
time_prediction = args.time_prediction
time_prediction_type = args.time_prediction_type
ablation = args.ablation
ablation_type = args.ablation_type
WALK_POOL = args.walk_pool
walk_linear_out = args.walk_linear_out
test_path = args.test_path
AGG = args.agg
SEED = args.seed
assert(CPU_CORES >= -1)
set_random_seed(SEED)
logger, get_checkpoint_path, best_model_path = set_up_logger(args, sys_argv)
if args.debug == False:
if interpretation:
print("Interpretation used spd, walk Linear out, mean pooling for walk")
POS_ENC = 'spd'
walk_linear_out = True
WALK_POOL = 'sum'
best_model_path = './interpretation_output/{}_{}_{}.pth'.format(str(time.time()), DATA, interpretation_type)
fout = open('./interpretation_output/{}_{}_{}.txt'.format(str(time.time()), DATA, interpretation_type), 'w')
sys.stdout = fout
elif ablation:
print("Ablation study: wedge and open triangle")
# best_model_path = './ablation_output/{}_{}.pth'.format(DATA, ablation_type)
# fout = open('./interpretation_output/{}_{}.txt'.format(DATA, interpretation_type), 'w')
# POS_ENC = 'lp'
# sys.stdout = fout
elif time_prediction:
print("Time prediction used lp")
"""
for time prediction task, remember to plus 1 for the delta t.
Since delta may be 1, thus log 1 becomes 0, eventually lead to nan.
"""
POS_ENC = 'lp'
best_model_path = './time_prediction_output/{}_{}_{}.pth'.format(str(time.time()), DATA, time_prediction_type)
fout = open('./time_prediction_output/{}_{}_{}.txt'.format(str(time.time()), DATA, time_prediction_type), 'w')
sys.stdout = fout
# Load data and sanity check
g_df = pd.read_csv('./processed/ml_{}.csv'.format(DATA))
e_feat = np.load('./processed/ml_{}.npy'.format(DATA))
n_feat = np.load('./processed/ml_{}_node.npy'.format(DATA))
src_l = g_df.u.values
dst_l = g_df.i.values
e_idx_l = g_df.idx.values
label_l = g_df.label.values
ts_l = g_df.ts.values
# scale the time
# congress-bills and DAWN dont have to do the scale
if DATA == 'congress-bills':
pass
elif DATA == 'DAWN':
pass
# elif DATA == 'NDC-substances':
# pass
else:
pass
_time = 1
while _time < max(ts_l):
_time = _time * 10
if time_prediction:
ts_l = ts_l * 1.0 / (_time * 1e-7)
else:
ts_l = ts_l * 1.0 / (_time * 1e-7)
print(_time)
print(max(ts_l), min(ts_l))
ts_l = ts_l - min(ts_l)
print(max(ts_l), min(ts_l))
max_idx = max(src_l.max(), dst_l.max())
print(n_feat.shape[0], max_idx, np.unique(np.stack([src_l, dst_l])).shape[0])
assert(np.unique(np.stack([src_l, dst_l])).shape[0] == max_idx) # all nodes except node 0 should appear and be compactly indexed
assert(n_feat.shape[0] == max_idx + 1) # the nodes need to map one-to-one to the node feat matrix
import pickle
# find possitive and negative triplet
if DATA == 'tags-math-sx':
time_window_factor, time_start_factor = 0.10, 0.4
elif DATA == 'email-Eu':
time_window_factor, time_start_factor = 0.10, 0.05
else:
time_window_factor, time_start_factor = 0.10, 0.4
file_path = './saved_triplets/'+DATA+'/'+DATA+'_'+str(time_start_factor)+'_'+str(time_window_factor)
test = 0
if os.path.exists(file_path) and (test==0):
if DATA == 'threads_ask_ubuntu':
with open(file_path+'/triplets.npy', 'rb') as f:
x = pickle.load(f)
else:
with open(file_path+'/triplets.npy', 'rb') as f:
x = np.load(f, allow_pickle=True)
cls_tri, opn_tri, wedge, nega, set_all_nodes = x[0], x[1], x[2], x[3], x[4]
print("close tri", len(cls_tri[0]))
print("open tri", len(opn_tri[0]))
print("wedge", len(wedge[0]))
print("nega", len(nega[0]))
else:
cls_tri, opn_tri, wedge, nega, set_all_nodes = preprocess_dataset(ts_list=ts_l, src_list=src_l, dst_list=dst_l, node_max=max_idx, edge_idx_list=e_idx_l,
label_list=label_l, time_window_factor=time_window_factor, time_start_factor=time_start_factor)
if not(os.path.exists(file_path)):
os.makedirs(file_path)
if DATA == 'threads_ask_ubuntu': # reason is that it's too big > 4G, so we can't directly save them using numpy.save
# in addition, since too many nega(edge in our paper), we can cut part of them
print("cut threads_ask_ubuntu since too many nega 6 Trillion. We only choose 6M.")
idx = np.array(range(6000000)) * 1000 # TODO: check the code here, if it doesn't work, please check cut_dataset.py . That should work
nega_new = [nega[0][idx], nega[1][idx], nega[2][idx], nega[3][idx], nega[4][idx]]
with open(file_path+'/triplets.npy', 'wb') as f: # TODO: if we cut here, then no need to use pickle
x = np.array([cls_tri, opn_tri, wedge, nega, set_all_nodes])
print(pickle.HIGHEST_PROTOCOL)
pickle.dump(x, f, protocol=pickle.HIGHEST_PROTOCOL)
else:
with open(file_path+'/triplets.npy', 'wb') as f:
x = np.array([cls_tri, opn_tri, wedge, nega, set_all_nodes])
np.save(f, x)
# with open(file_path+'/triplets_cls.npy', 'wb') as f:
# x = np.array(cls_tri)
# np.save(f, x)
# with open(file_path+'/triplets_opn.npy', 'wb') as f:
# x = np.array(opn_tri)
# np.save(f, x)
# with open(file_path+'/triplets_wedge.npy', 'wb') as f:
# x = np.array(wedge)
# np.save(f, x)
# with open(file_path+'/triplets_nega.npy', 'wb') as f:
# x = np.array(nega)
# np.save(f, x)
# with open(file_path+'/triplets_set_all_nodes.npy', 'wb') as f:
# x = np.array(set_all_nodes)
# np.save(f, x)
# triangle closure
# randomly choose 70% as training, 15% as validating, 15% as testing
ts1 = time_start_factor + 0.7 * (1 - time_start_factor - time_window_factor)
ts2 = time_start_factor + 0.85 * (1 - time_start_factor - time_window_factor)
ts_start = (ts_l.max() - ts_l.min()) * time_start_factor + ts_l.min()
ts_end = ts_l.max() - (ts_l.max() - ts_l.min()) * time_window_factor
ts_train = (ts_end - ts_start) * 0.7 + ts_start
ts_val = (ts_end - ts_start) * 0.85 + ts_start
# create two neighbor finders to handle graph extraction.
# for training and validating use the partial one
# while test phase still always uses the full one
# no need now, in case we have transductive and inductive settings in the future
partial_adj_list = [[] for _ in range(max_idx + 1)]
full_adj_list = [[] for _ in range(max_idx + 1)]
full_adj_list = [[] for _ in range(max_idx + 1)]
for src, dst, eidx, ts in zip(src_l, dst_l, e_idx_l, ts_l):
full_adj_list[src].append((dst, eidx, ts))
full_adj_list[dst].append((src, eidx, ts))
full_ngh_finder = NeighborFinder(full_adj_list, bias=args.bias, use_cache=NGH_CACHE, sample_method=args.pos_sample)
partial_adj_list = [[] for _ in range(max_idx + 1)]
idx_partial = ts_l <= ts_val
for src, dst, eidx, ts in zip(src_l[idx_partial], dst_l[idx_partial], e_idx_l[idx_partial], ts_l[idx_partial]):
partial_adj_list[src].append((dst, eidx, ts))
partial_adj_list[dst].append((src, eidx, ts))
partial_ngh_finder = NeighborFinder(partial_adj_list, bias=args.bias, use_cache=NGH_CACHE, sample_method=args.pos_sample)
print("Finish build HIT")
ngh_finders = partial_ngh_finder, full_ngh_finder
# multiprocessing memory setting
# rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
# resource.setrlimit(resource.RLIMIT_NOFILE, (200*args.bs, rlimit[1]))
# model initialization
device = torch.device('cuda:{}'.format(GPU))
hit = HIT(n_feat, e_feat, agg=AGG,
num_layers=NUM_LAYER, use_time=USE_TIME, attn_agg_method=ATTN_AGG_METHOD, attn_mode=ATTN_MODE,
n_head=ATTN_NUM_HEADS, drop_out=DROP_OUT, pos_dim=POS_DIM, pos_enc=POS_ENC, walk_pool=WALK_POOL,
num_neighbors=NUM_NEIGHBORS, walk_n_head=WALK_N_HEAD, walk_mutual=WALK_MUTUAL, walk_linear_out=walk_linear_out,
cpu_cores=CPU_CORES, verbosity=VERBOSITY, get_checkpoint_path=get_checkpoint_path, interpretation=interpretation,
interpretation_type=interpretation_type, time_prediction=time_prediction, ablation=ablation, ablation_type=ablation_type)
hit.to(device)
# dataset initialization
dataset = TripletSampler(cls_tri, opn_tri, wedge, nega, ts_start, ts_train, ts_val, ts_end, set_all_nodes, DATA,
interpretation_type, time_prediction_type=time_prediction_type, ablation_type=ablation_type)
logger.info(interpretation and (not os.path.exists(best_model_path)))
# if ((not interpretation) and test_path is None) or (interpretation and (not os.path.exists(best_model_path))): # change only for interpretation
if (not os.path.exists(best_model_path)):
optimizer = torch.optim.Adam(hit.parameters(), lr=LEARNING_RATE)
criterion = torch.nn.CrossEntropyLoss()
early_stopper = EarlyStopMonitor(tolerance=TOLERANCE)
# start train and val phases
train_val(dataset, hit, args.mode, BATCH_SIZE, NUM_EPOCH, criterion, optimizer, early_stopper, ngh_finders, logger, interpretation=interpretation, time_prediction=time_prediction)
else:
logger.info("load model")
dataset.set_batch_size(BATCH_SIZE)
hit.load_state_dict(torch.load(test_path))
dic1 = {}
dic2 = {}
# final testing
hit.update_ngh_finder(full_ngh_finder) # remember that testing phase should always use the full neighbor finder
"""
comment for interpretation
"""
if time_prediction:
NLL_total, MSE_total, MAE_total, num_test_instance, time_predicted_total, time_gt_total = eval_one_epoch('test for {} nodes'.format(args.mode), hit, dataset, val_flag='test', interpretation=interpretation, time_prediction=time_prediction)
print('Testing NLL: ', NLL_total / num_test_instance, 'num instances: ', num_test_instance)
print('Testing MSE: ', MSE_total / num_test_instance, 'num instances: ', num_test_instance)
print('Testing MAE: ', MAE_total / num_test_instance, 'num instances: ', num_test_instance)
file_addr = './Histogram/'+DATA+'/'
print("time_predicted_total", time_predicted_total)
print("time_gt_total", time_gt_total)
if not os.path.exists(file_addr):
os.makedirs(file_addr)
histogram.plot_hist_multi([time_predicted_total, time_gt_total], bins=50, figure_title='time_prediction_histogram', file_addr=file_addr, label=['Ours', 'Groundtruth'])
else:
test_acc, test_ap, test_f1, test_auc, cm = eval_one_epoch('test for {} nodes'.format(args.mode), hit, dataset, val_flag='test', interpretation=interpretation, time_prediction=time_prediction)
print('Test statistics: {} all nodes -- acc: {}, auc: {}, ap: {}'.format(args.mode, test_acc, test_auc, test_ap))
# print("Confusion matrix\n", cm)
logger.info(', '.join(str(r) for r in cm.reshape(1,-1)))
logger.info('Test statistics: {} all nodes -- acc: {}, auc: {}, ap: {}'.format(args.mode, test_acc, test_auc, test_ap))
# save model
if test is None:
logger.info('Saving hit model')
torch.save(hit.state_dict(), best_model_path)
logger.info('hit models saved')