-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_sort.py
349 lines (307 loc) · 15.2 KB
/
main_sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import torch
import numpy as np
import wandb
from torch_geometric.loader import DataLoader
from torch import optim
from torch import nn
import argparse
import wandb
import random
from data_utils.sorting_dataset import SortingDataset, symmetrize_transform, bidirect_transform
from model.gnns import Id, Id_PE, GINE, GINEInvariant, GPSInvariant, GPS, GINEEquivariant
from model.pe_encoders import PEEncoder, NaivePEEncoder
from model.dag_transformer.models import GraphTransformer as DAGformer
from model.sat.models import GraphTransformer as SAT
from model.graph_classfication_model_sorting import GraphClassifier
from utils.get_mag_lap import AddLaplacianEigenvectorPE, AddMagLaplacianEigenvectorPE
from utils.eval_metric import generate_cross_entropy_mask
from torch_geometric.transforms import Compose
from model.dag_transformer.data import dag_pretransform
import os.path as osp
import pickle
from sklearn.metrics import precision_score, recall_score, f1_score
class Trainer:
def __init__(self, cfg):
set_seed(cfg.seed)
self.cfg = cfg
self.device = f"cuda:{cfg.gpu_id}"
# positional encodings pre_transform
processed_suffix = ''
if cfg.pe is not None and cfg.pe_dim > 0:
processed_suffix += cfg.pe + str(cfg.pe_dim)
if cfg.pe == 'lap':
pre_transform = AddLaplacianEigenvectorPE(k=cfg.pe_dim, attr_name='pe')
elif cfg.pe == 'maglap':
processed_suffix += '_' + str(cfg.q_dim) + 'q'+str(cfg.q)
processed_suffix += '_dynamic' if cfg.dynamic_q else ''
pre_transform = AddMagLaplacianEigenvectorPE(k=cfg.pe_dim, q=cfg.q,
multiple_q=cfg.q_dim, attr_name='pe', dynamic_q=cfg.dynamic_q)
else:
raise Exception("args.pe: unknown positional encodings")
else:
pre_transform = None
if cfg.base_gnn.startswith('dag'):
processed_suffix += '_dag'
if pre_transform is None:
pre_transform = lambda data: dag_pretransform(data)
else:
pre_transform = Compose([pre_transform, lambda data: dag_pretransform(data)])
if cfg.direct == 'un':
transform = symmetrize_transform
elif cfg.direct == 'bi':
transform = bidirect_transform
else:
raise Exception('Unrecognized args.direct!')
# data filtering
n_filter = cfg.max_num_nodes
if n_filter == -1:
pre_filter = None
else:
pre_filter = lambda data: data.num_nodes <= n_filter
processed_suffix += '_n' + str(n_filter)
# pre_filter = None
# load dataset with filtering
train_dataset = SortingDataset(name='sorting/7to11_12_13to16', root='data/', transform=transform,
pre_filter=pre_filter, pre_transform=pre_transform,
processed_suffix=processed_suffix, split='train')
val_dataset = SortingDataset(name='sorting/7to11_12_13to16', root='data/', transform=transform,
pre_filter=pre_filter, pre_transform=pre_transform,
processed_suffix=processed_suffix, split='valid')
test_dataset = SortingDataset(name='sorting/7to11_12_13to16', root='data/', transform=transform,
pre_filter=pre_filter, pre_transform=pre_transform,
processed_suffix=processed_suffix, split='test')
self.train_loader = DataLoader(train_dataset, batch_size=cfg.batch_size, shuffle=True)
self.val_loader = DataLoader(val_dataset, batch_size=cfg.batch_size, shuffle=False)
self.test_loader = DataLoader(test_dataset, batch_size=cfg.batch_size, shuffle=False)
# construct model
actual_pe_dim = cfg.pe_dim
if cfg.pe == 'maglap':
actual_pe_dim *= 2 * cfg.q_dim
#if cfg.base_gnn == 'transformer':
# base_gnn = GraphTransformer(cfg.node_emb_dim, cfg.hidden_dim, cfg.hidden_dim, cfg.num_layers, norm=cfg.bn)
#elif cfg.base_gnn == 'transformer_e':
# base_gnn = GraphTransformerInvariant(cfg.node_emb_dim, cfg.hidden_dim, cfg.hidden_dim,
#actual_pe_dim, cfg.q_dim, cfg.num_layers, norm=cfg.bn,
#handle_symmetry=cfg.handle_symmetry, pe_type=cfg.pe)
# pe encoder: a learnable pre-processing model for pe
pe_config = {'pe_dim': cfg.pe_dim, 'q_dim': cfg.q_dim, 'pe_type': cfg.pe, 'pe_norm': cfg.pe_norm}
if cfg.pe_encoder == 'naive':
pe_encoder = NaivePEEncoder(pe_config, cfg.hidden_dim)
elif cfg.pe_encoder == 'none':
pe_encoder = None
else:
pe_encoder = PEEncoder(pe_config, cfg.hidden_dim, encoder=cfg.pe_encoder, sign_inv=cfg.sign_inv,
attn=cfg.pe_attn, dropout=0.15)
# graph encoder
if cfg.base_gnn == 'gin':
base_gnn = GINE(cfg.hidden_dim, cfg.num_layers)
elif cfg.base_gnn == 'gin_e':
base_gnn = GINEInvariant(cfg.hidden_dim, actual_pe_dim, cfg.q_dim, cfg.num_layers, pe_type=cfg.pe,
handle_symmetry=cfg.handle_symmetry)
elif cfg.base_gnn.startswith('transformer'):
if cfg.base_gnn.endswith('_e'):
pe_config['handle_symmetry'] = cfg.handle_symmetry
else:
pe_config = None
# use a 0-hop SAT to do transformer
base_gnn = SAT(d_model=cfg.hidden_dim,
dim_feedforward=4*cfg.hidden_dim,
dropout=0.2,
num_heads=4,
num_layers=cfg.num_layers,
batch_norm=True,
gnn_type='gcn',
k_hop=0,
se='gnn',
deg=None,
edge_dim=cfg.hidden_dim,
pe_config=pe_config,
)
elif cfg.base_gnn == 'none':
base_gnn = Id(cfg.hidden_dim)
elif cfg.base_gnn == 'none_e':
base_gnn = Id_PE(cfg.hidden_dim)
# overall network
#if '_e' in cfg.base_gnn or '_eq' in cfg.base_gnn:
# self.predictor = GraphClassifierInvariant(cfg.node_emb_dim, actual_pe_dim, cfg.q_dim,
#gnn_model=base_gnn, pe_type=cfg.pe)
#else:
self.predictor = GraphClassifier(cfg.node_emb_dim, gnn_model=base_gnn, pe_model=pe_encoder)
self.predictor.to(self.device)
print(f'#Params: {sum(p.numel() for p in self.predictor.parameters())}')
# construct optimizer
if cfg.optimizer == 'adam':
self.optimizer = optim.Adam(self.predictor.parameters(), betas=(0.7, 0.9), weight_decay=6e-5, lr=cfg.lr)
elif cfg.optimizer == 'adamw':
self.optimizer = optim.AdamW(self.predictor.parameters(), betas=(0.7, 0.9), lr=cfg.lr, weight_decay=6e-5)
# construct scheduler
if cfg.scheduler:
self.scheduler = optim.lr_scheduler.CosineAnnealingLR(self.optimizer, cfg.epochs - cfg.warmup)
else:
self.scheduler = None
# warm-up strategy
if cfg.warmup > 0:
lr_steps = cfg.lr / (cfg.warmup * len(self.train_loader))
def warmup_lr_scheduler(s):
lr = s * lr_steps
return lr
self.warmup_scheduler = warmup_lr_scheduler
# training and evaluation loss
#self.loss = nn.L1Loss(reduction='mean')
#self.loss = nn.MSELoss(reduction='mean')
#self.loss = nn.CrossEntropyLoss(reduction='none')
self.loss = nn.BCEWithLogitsLoss(reduction='mean')
#test_maglap(train_dataset, self.predictor, dist='lpd')
# init wandb
if cfg.wandb:
raise Exception('init wandb or disable it')
def train(self):
best_val_loss, best_test_loss = 9999.0, 9999.0
#self.predictor.load_state_dict(torch.load('./model_code.pt'))
for curr_epoch in range(1, self.cfg.epochs + 1):
train_loss = self.train_epoch(curr_epoch)
val_metrics, val_ce_loss = self.evaluate(self.val_loader)
test_metrics, test_ce_loss = self.evaluate(self.test_loader)
val_loss = 1. - val_metrics['overall']['F1']
test_loss = 1. - test_metrics['overall']['F1']
if curr_epoch > self.cfg.warmup and self.scheduler is not None:
self.scheduler.step()
#val_loss, test_loss = 0., 0.
# self.scheduler.step(eval_loss)
# lr = self.scheduler.get_last_lr()[0]
#lr = self.optimizer.state_dict()['param_groups'][0]['lr']
if self.cfg.wandb:
report = {'train_loss': train_loss, 'val_f1': val_metrics['overall']['F1'],
'test_f1': test_metrics['overall']['F1'], 'val_loss': val_ce_loss, 'test_loss': test_ce_loss}
wandb.log(report)
if val_loss < best_val_loss:
best_val_loss, best_test_loss = val_loss, test_loss
if self.cfg.wandb:
wandb.run.summary["best_val_f1"] = val_metrics['overall']['F1']
for key in test_metrics:
for metric in test_metrics[key]:
wandb.run.summary['best_test_'+key+'_'+metric] = test_metrics[key][metric]
wandb.run.summary["best_training_loss"] = train_loss
wandb.run.summary['best_epoch'] = curr_epoch
print('Best test loss: %.6f' % best_test_loss)
def train_epoch(self, curr_epoch):
self.predictor.train()
total_loss = 0
total_acc = 0
print('Training Epoch %d...' % curr_epoch)
for i, batch in enumerate(self.train_loader):
if i % 5 == 0:
print('Training Batch %d / %d' % (i, len(self.train_loader)))
if curr_epoch <= self.cfg.warmup:
iteration = (curr_epoch - 1) * len(self.train_loader) + i + 1
for param_group in self.optimizer.param_groups:
param_group["lr"] = self.warmup_scheduler(iteration)
loss = self.train_batch(batch)
total_loss += loss
# total_acc += acc
ave_loss = total_loss / len(self.train_loader.dataset)
# ave_acc = total_acc / len(self.train_loader.dataset)
#print('Training Epoch %d: Loss %.3f' % (curr_epoch, ave_loss))
return ave_loss
def train_batch(self, batch):
batch.to(self.device)
self.optimizer.zero_grad()
loss = 0.
acc = 0.
y_pred = self.predictor(batch)[:, 0] # [B]
y = batch.y
loss = self.loss(y_pred, y)
# acc += (y_pred_i.argmax(-1) == y[:, i]).float().sum()
# loss = loss / len(y_pred)
loss.backward()
self.optimizer.step()
loss = loss.item()
# acc = acc.item() / 5
# self.scheduler.step()
return loss * y.size(0)
def evaluate(self, eval_loader):
self.predictor.eval()
pred_list = []
ref_list = eval_loader.dataset.y.tolist()
seq_len_list = eval_loader.dataset.seq_len[:, 0].tolist()
total_loss = 0
for batch in eval_loader:
pred = self.evaluate_batch(batch)
total_loss += self.loss(pred, batch.y)
pred_list += (pred > 0.).float().tolist()
#ref_list += batch.y.tolist()
#seq_len_list += batch.seq_len[:, 0].tolist()
return self.eval_metrics(pred_list, ref_list, seq_len_list), total_loss / len(eval_loader)
def evaluate_batch(self, batch):
batch.to(self.device)
#loss = 0.
with torch.no_grad():
pred = self.predictor(batch)[:, 0]
#pred = (pred > 0.).float()
#return pred.tolist()
return pred
def eval_metrics(self, pred_list, ref_list, seq_len_list):
pred, ref, seq_len = np.array(pred_list), np.array(ref_list), np.array(seq_len_list)
seq_len_unique = np.unique(seq_len)
report = {'overall': {'precision': precision_score(ref, pred), 'recall': recall_score(ref, pred), 'F1': f1_score(ref, pred)}}
for seq_l in seq_len_unique:
ind = np.where(seq_len == seq_l)
pred_l = pred[ind]
ref_l = ref[ind]
report['seq_len_%d' % seq_l] = {'precision': precision_score(ref_l, pred_l), 'recall': recall_score(ref_l, pred_l),
'F1': f1_score(ref_l, pred_l)}
return report
class Config:
def __init__(self, args):
for key, value in args._get_kwargs():
setattr(self, key, value)
def set_seed(seed: int) -> None:
"""
Based on https://github.com/huggingface/transformers/blob/v4.28.1/src/transformers/trainer_utils.py#L83
"""
random.seed(seed)
#np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def main():
torch.set_num_threads(2)
# hyper-parameters parsing
parser = argparse.ArgumentParser()
# dataset
parser.add_argument("--num_node_types", type=int, default=0)
parser.add_argument("--max_num_nodes", type=int, default=-1)
parser.add_argument("--subset", type=int, default=-1)
# training parameters
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--epochs", type=int, default=15)
parser.add_argument("--gpu_id", type=int, default=0)
parser.add_argument("--wandb", action='store_true',default=False)
parser.add_argument("--direct", type=str, default='bi') # un, uni, bi, bi-dfs
parser.add_argument("--optimizer", type=str, default='adamw')
parser.add_argument("--warmup", type=int, default=2)
parser.add_argument("--scheduler", action='store_true', default=True)
# model parameters
parser.add_argument("--base_gnn", type=str, default='gin')
parser.add_argument("--node_emb_dim", type=int, default=256)
parser.add_argument("--hidden_dim", type=int, default=256)
parser.add_argument("--num_layers", type=int, default=3)
parser.add_argument("--pe", type=str, default=None)
parser.add_argument("--pe_dim", type=int, default=0)
parser.add_argument("--degree", action='store_true', default=False)
# parameters for maglap
parser.add_argument("--q", type=float, default=1e-2)
parser.add_argument("--q_dim", type=int, default=1)
parser.add_argument("--dynamic_q", action='store_true', default=False)
parser.add_argument("--handle_symmetry", type=str, default='spe')
parser.add_argument("--pe_encoder", type=str, default='naive')
parser.add_argument("--pe_attn", action='store_true', default=False)
parser.add_argument("--pe_norm", action='store_true', default=False)
parser.add_argument("--sign_inv", action='store_true', default=False)
args = parser.parse_args()
cfg = Config(args)
trainer = Trainer(cfg)
trainer.train()
if __name__ == "__main__":
main()