-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
237 lines (204 loc) · 9.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import torch
import wandb
from torch_geometric.loader import DataLoader
from torch import optim
from torch import nn
import argparse
import wandb
import random
from data_utils.distance_dataset import random_graph_distance
from model.gnns import Id, GIN, GraphTransformer, GraphTransformerInvariant, Id_PE
from model.link_prediction_model import LinkPrediction, LinkPredictionInvariant
from model.pe_encoders import NaivePEEncoder, PEEncoder
from utils.get_mag_lap import AddLaplacianEigenvectorPE, AddMagLaplacianEigenvectorPE, AddSingularValuePE
from torch_geometric.utils import degree
from test_utils import test_maglap
def my_transform(data):
d = torch.cat([degree(data.edge_index[0], data.num_nodes).unsqueeze(-1),
degree(data.edge_index[1], data.num_nodes).unsqueeze(-1)], dim=-1)
data.update({"degree": d})
return data
class Trainer:
def __init__(self, cfg):
set_seed(cfg.seed)
self.cfg = cfg
self.device = f"cuda:{cfg.gpu_id}"
# construct dataset
transform = my_transform
processed_suffix = ''
if cfg.pe is not None and cfg.pe_dim > 0:
processed_suffix += cfg.pe + str(cfg.pe_dim)
if cfg.pe == 'lap':
pre_transform = AddLaplacianEigenvectorPE(k=cfg.pe_dim, attr_name='pe')
elif cfg.pe == 'svd':
pre_transform = AddSingularValuePE(k=cfg.pe_dim, attr_name='pe')
elif cfg.pe == 'maglap':
processed_suffix += '_' + str(cfg.q_dim) + 'q'+str(cfg.q)
processed_suffix += '_dynamic' if cfg.dynamic_q else ''
pre_transform = AddMagLaplacianEigenvectorPE(k=cfg.pe_dim, q=cfg.q,
dynamic_q=cfg.dynamic_q,
multiple_q=cfg.q_dim, attr_name='pe')
else:
raise Exception("args.pe: unknown positional encodings")
else:
pre_transform = None
train_dataset = random_graph_distance(dataname=cfg.dataname, root='./data', split="train",
pre_transform=pre_transform,
transform=transform, processed_suffix=processed_suffix)
test_dataset = random_graph_distance(dataname=cfg.dataname, root='./data', split="valid",
pre_transform=pre_transform,
transform=transform, processed_suffix=processed_suffix)
# construct dataloader
# use subset of training set
train_id = [i for i in range(len(train_dataset))]
random.shuffle(train_id)
if cfg.subset != -1:
train_id = train_id[:cfg.subset]
train_id, val_id = train_id[:int(len(train_id)*0.95)], train_id[int(len(train_id)*0.95):]
self.train_loader = DataLoader(train_dataset[train_id], batch_size=cfg.batch_size, shuffle=True)
self.val_loader = DataLoader(train_dataset[val_id], batch_size=cfg.batch_size)
self.test_loader = DataLoader(test_dataset, batch_size=cfg.batch_size)
# construct model
# pe encoder: a learnable pre-processing model for pe
pe_config = {'pe_dim': cfg.pe_dim, 'q_dim': cfg.q_dim, 'pe_type': cfg.pe, 'pe_norm': False}
if cfg.pe_encoder:
pe_encoder = PEEncoder(pe_config, cfg.hidden_dim, encoder='mlp', sign_inv=True)
else:
pe_encoder = None
# base_gnn = GIN(cfg.node_emb_dim, cfg.hidden_dim, cfg.hidden_dim, cfg.num_layers)
actual_pe_dim = cfg.pe_dim
eigval_dim = cfg.pe_dim * cfg.q_dim
if cfg.pe == 'maglap':
actual_pe_dim *= 2 * cfg.q_dim
elif cfg.pe == 'svd':
actual_pe_dim *= 2
eigval_dim = cfg.pe_dim
if cfg.base_gnn == 'transformer':
base_gnn = GraphTransformer(cfg.hidden_dim, cfg.num_layers)
elif cfg.base_gnn == 'transformer_e':
base_gnn = GraphTransformerInvariant(cfg.hidden_dim,
actual_pe_dim, cfg.q_dim, cfg.num_layers,
handle_symmetry=cfg.handle_symmetry, pe_type=cfg.pe)
elif cfg.base_gnn == 'none':
base_gnn = Id(cfg.hidden_dim)
elif cfg.base_gnn == 'none_e':
base_gnn = Id_PE(cfg.hidden_dim)
if '_e' in cfg.base_gnn:
self.predictor = LinkPredictionInvariant(cfg.num_node_types, cfg.node_emb_dim, actual_pe_dim,
cfg.q_dim, base_gnn, pe_type=cfg.pe,
handle_symmetry=cfg.handle_symmetry, out_dim=cfg.out_dim)
else:
self.predictor = LinkPrediction(cfg.num_node_types, cfg.node_emb_dim, actual_pe_dim, eigval_dim, base_gnn,
pe_model=pe_encoder, out_dim=cfg.out_dim)
self.predictor.to(self.device)
# construct optimizer
self.optimizer = optim.Adam(self.predictor.parameters(), lr=cfg.lr)
# training and evaluation loss
#self.loss = nn.L1Loss(reduction='mean')
self.loss = nn.MSELoss(reduction='mean')
#test_maglap(train_dataset, self.predictor, dist='lpd')
#rint('clear')
# init wandb
if cfg.wandb:
raise Exception('init wandb or disable it')
def train(self):
best_val_loss, best_test_loss = 9999.0, 9999.0
for curr_epoch in range(1, self.cfg.epochs + 1):
train_loss = self.train_epoch(curr_epoch)
val_loss = self.evaluate(self.val_loader)
test_loss = self.evaluate(self.test_loader)
# self.scheduler.step(eval_loss)
# lr = self.scheduler.get_last_lr()[0]
#lr = self.optimizer.state_dict()['param_groups'][0]['lr']
if self.cfg.wandb:
wandb.log({'train_loss': train_loss, 'eval_loss': val_loss, 'test_loss': test_loss})
if val_loss < best_val_loss:
best_val_loss, best_test_loss = val_loss, test_loss
if self.cfg.wandb:
wandb.run.summary["best_val_loss"] = best_val_loss
wandb.run.summary["best_test_loss"] = best_test_loss
wandb.run.summary["best_training_loss"] = train_loss
wandb.run.summary['best_epoch'] = curr_epoch
print('Best test loss: %.6f' % best_test_loss)
#torch.save(self.predictor.state_dict(), 'model.pt')
def train_epoch(self, curr_epoch):
self.predictor.train()
total_loss = 0
print('Training Epoch %d...' % curr_epoch)
for i, batch in enumerate(self.train_loader):
total_loss += self.train_batch(batch)
ave_loss = total_loss / self.train_loader.dataset.y.size(0)
#print('Training Epoch %d: Loss %.3f' % (curr_epoch, ave_loss))
return ave_loss
def train_batch(self, batch):
batch.to(self.device)
self.optimizer.zero_grad()
y_pred = self.predictor(batch) # [B]
#loss = self.loss(y_pred.view(-1), batch.y) # [1]
loss = self.loss(y_pred, batch.y.view(y_pred.size())) # [1]
loss.backward()
self.optimizer.step()
loss = loss.item()
# self.scheduler.step()
return loss * batch.y.size(0)
def evaluate(self, eval_loader):
self.predictor.eval()
total_loss = 0.0
for batch in eval_loader:
total_loss += self.evaluate_batch(batch)
total_loss /= eval_loader.dataset.y.size(0)
return total_loss
def evaluate_batch(self, batch):
batch.to(self.device)
with torch.no_grad():
y_pred = self.predictor(batch)
#return self.loss(y_pred.view(-1), batch.y).item() * batch.y.size(0)
return self.loss(y_pred, batch.y.view(y_pred.size())).item() * batch.y.size(0)
class Config:
def __init__(self, args):
for key, value in args._get_kwargs():
setattr(self, key, value)
def set_seed(seed: int) -> None:
"""
Based on https://github.com/huggingface/transformers/blob/v4.28.1/src/transformers/trainer_utils.py#L83
"""
random.seed(seed)
#np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def main():
torch.set_num_threads(2)
# hyper-parameters parsing
parser = argparse.ArgumentParser()
# dataset
parser.add_argument("--dataname", type=str, default='distance/16to63_64to71_72to83_ca')
parser.add_argument("--num_node_types", type=int, default=0)
parser.add_argument("--subset", type=int, default=-1)
# training parameters
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--batch_size", type=int, default=512)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--epochs", type=int, default=100)
parser.add_argument("--gpu_id", type=int, default=0)
parser.add_argument("--wandb", action='store_true',default=False)
# model parameters
parser.add_argument("--out_dim", type=int, default=1)
parser.add_argument("--base_gnn", type=str, default='none')
parser.add_argument("--node_emb_dim", type=int, default=64)
parser.add_argument("--hidden_dim", type=int, default=64)
parser.add_argument("--num_layers", type=int, default=4)
parser.add_argument("--pe", type=str, default=None)
parser.add_argument("--pe_dim", type=int, default=0)
parser.add_argument("--bn", action='store_true', default=False)
parser.add_argument("--pe_encoder", action='store_true', default=False)
# parameters for maglap
parser.add_argument("--q", type=float, default=1e-2)
parser.add_argument("--dynamic_q", action='store_true', default=False)
parser.add_argument("--q_dim", type=int, default=1)
parser.add_argument("--handle_symmetry", type=str, default='spe')
args = parser.parse_args()
cfg = Config(args)
trainer = Trainer(cfg)
trainer.train()
if __name__ == "__main__":
main()