-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathscoring.py
260 lines (205 loc) · 8.19 KB
/
scoring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Copyright 2018 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Runs online predictions and scores the model on them."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import sys
from googleapiclient import discovery
import numpy as np
from sklearn import metrics
from tensorflow import flags
from tensorflow import gfile
from tensorflow import logging
from constants import constants
FLAGS = flags.FLAGS
flags.DEFINE_integer('size', 1000,
'Number of records to consider for predictions.')
flags.DEFINE_string('project_name', None, 'Name of GCP project.')
flags.DEFINE_string('model_name', None, 'Name of Gooele Cloud ML Engine model.')
flags.DEFINE_string('input_path', None, 'Directory with records to score.')
flags.DEFINE_integer('random_seed', 1, 'Random seed for subset selection.')
flags.DEFINE_integer('batch_size', 20, 'Batch size for prediction job.')
flags.mark_flag_as_required('project_name')
flags.mark_flag_as_required('input_path')
flags.mark_flag_as_required('input_path')
# Model scoring constants.
_INSTANCE_KEY = 'inputs'
_SCORES_KEY = 'scores'
_CLASSES_KEY = 'classes'
_CONTINUOUS_TYPE = 'continuous_input'
_CATEGORICAL_TYPE = 'categorical_input'
_METRICS = {_CATEGORICAL_TYPE: ['accuracy_score', 'precision_score',
'recall_score'],
_CONTINUOUS_TYPE: ['log_loss', 'roc_auc_score']}
_ACCURACY_THRESHOLD = 0.5
def get_prediction_input(files):
"""Reads and concatenates text files in input directory.
Args:
files: List of `str`, containing absolute path to files to read.
Returns:
List of `str` containing independent text reviews.
Raises:
ValueError: If input files are empty.
"""
instances = []
for path in files:
with gfile.GFile(path, 'r') as lines:
instances += lines
if not instances:
raise ValueError('No review found in input files.')
return instances
def format_input(input_path, size):
"""Reads input path, randomly selects a sub-sample and concatenates them.
Args:
input_path: `str`, directory to read files from.
size: `int`, number of files to read.
Returns:
List of `str` containing independent text reviews.
"""
files = [path for path in gfile.ListDirectory(input_path)
if path.endswith(constants.FILE_EXTENSION)]
files = np.random.choice(files, size, replace=False)
files = [os.path.join(input_path, filename) for filename in files]
return get_prediction_input(files)
def predict_json(project, model, instances, version=None):
"""Sends json data to a CMLE deployed model for prediction.
Args:
project: str, project where the Cloud ML Engine Model is deployed.
model: str, model name.
instances: [Mapping[str: Any]], Keys should be the names of Tensors
your deployed model expects as inputs. Values should be datatypes
convertible to Tensors, or (potentially nested) lists of datatypes
convertible to tensors.
version: str, version of the model to target.
Returns:
Mapping[str: any]: dictionary of prediction results defined by the
model.
Raises:
RuntimeError: If the call to ml-engine returns an error.
"""
# Create the ML Engine service object.
# To authenticate set the environment variable
# GOOGLE_APPLICATION_CREDENTIALS=<path_to_service_account_file>
service = discovery.build('ml', 'v1')
name = 'projects/{}/models/{}'.format(project, model)
if version:
name += '/versions/{}'.format(version)
response = service.projects().predict(
name=name,
body={'instances': instances}
).execute()
if 'error' in response:
raise RuntimeError(response['error'])
return response['predictions']
def analyze(probas, target):
"""Analyzes predictions and returns results.
Computes different metrics (specified by `constants.METRICS`) comparing
predictions to true labels.
Args:
probas: `np.array` with predicted probabilities.
target: `np.array` of `int` with true labels.
Returns:
Dictionary of `str` to `float` mapping metric names to the corresponding
scores.
"""
results = {}
for metric_type, sub_metrics in _METRICS.iteritems():
for metric_name in sub_metrics:
metric = getattr(metrics, metric_name)
results[metric_name] = metric(
target,
(probas if metric_type == _CONTINUOUS_TYPE
else probas > _ACCURACY_THRESHOLD))
return results
def run(project, model, size, input_path, batch_size, random_seed=None):
"""Runs prediction job on sample of labelled reviews and analyzes results.
Args:
project: `str`, GCP project id.
model: `str`, name of Cloud ML Engine model.
size: `int`, number of reviews to process.
input_path: `str`, path to input data (reviews).
batch_size: `int`, size of predictions batches.
random_seed: `int`, random seed for sub-sample selection.
Returns:
Dictionary of `str` to `float` mapping metric names to the corresponding
scores.
Raises:
ValueError: If the total number of review found don't match the number of
files.
ValueError: If the size of output is not greater than `0`.
ValueError: If the number of predictions returned by API dont match input.
"""
if random_seed is not None:
np.random.seed(random_seed)
def _get_probas(subdir):
"""Computes predicted probabilities from records in input directory."""
instances = format_input(os.path.join(input_path, subdir), size)
# Checks that the number of records matches the number of files (expected
# exactly one review per file.
if len(instances) != size:
raise ValueError(
'Number of reviews found dont match the number of files.')
probas = collections.defaultdict(lambda: [])
step = int(size / batch_size) if batch_size else size
start = 0
failed_predictions = 0
while start < len(instances):
to_predict = instances[start:(start+step)]
try:
predictions = predict_json(project, model, to_predict)
except KeyboardInterrupt:
raise
except: # pylint: disable=bare-except
logging.info('Error: %s', sys.exc_info()[0])
failed_predictions += len(to_predict)
else:
for pred in predictions:
for proba, cl in zip(pred[_SCORES_KEY], pred[_CLASSES_KEY]):
probas[cl].append(proba)
start += step
probas_positive = np.array(probas[str(constants.POSITIVE_SENTIMENT_LABEL)])
if not len(probas_positive): # pylint: disable=g-explicit-length-test
raise ValueError('Size of output expected to be greater than `0`.')
if len(probas_positive) + failed_predictions != size:
raise ValueError(
'Number of predictions returned by API dont match input.')
return probas_positive, failed_predictions
neg_probas, neg_failed = _get_probas(constants.SUBDIR_NEGATIVE)
pos_probas, pos_failed = _get_probas(constants.SUBDIR_POSITIVE)
pos_label = constants.POSITIVE_SENTIMENT_LABEL
neg_label = constants.NEGATIVE_SENTIMENT_LABEL
target = []
for label, proba in zip([pos_label, neg_label], [pos_probas, neg_probas]):
target.append(label * np.ones(proba.shape))
target = np.array(np.concatenate(target), dtype=np.int32)
probas = np.concatenate([pos_probas, neg_probas])
results = analyze(probas, target)
results['num_failed'] = neg_failed + pos_failed
results['num_succeeded'] = len(target)
return results
def main():
logging.set_verbosity(logging.INFO)
results = run(
project=FLAGS.project_name,
model=FLAGS.model_name,
size=FLAGS.size,
input_path=FLAGS.input_path,
random_seed=FLAGS.random_seed,
batch_size=FLAGS.batch_size)
logging.info('Results on batch: %s.', results)
if __name__ == '__main__':
main()