Skip to content

Latest commit

 

History

History
68 lines (56 loc) · 3.14 KB

README.md

File metadata and controls

68 lines (56 loc) · 3.14 KB

liquotaku

Link to the Medium post.

In this repo, I used go to query asynchronously the Binance API to retrieve high frequency data of traded volumes. I then used Jupyter and Keras to build Neural Networks that predicts the data well.

image

Check the Notebook for more info!

How to get started

First you need to create the data folders using the command below from the root of the repo.

mkdir -p data/volumes data/concatenated

Then you need to extract the data from Binance API using, for example the command below.

go run go/cmd/binanceklines.go --folder data/volumes --symbol BTCUSDT --start 20231001 --end 20231101

My extraction script is not very user friendly so if nothing happens, it probably means that the input is ill defined. So make sure that

  • the path to the data folder is valid.
  • the symbol is listed on Binance.
  • the start and end date are in the format YYYYMMDD.
  • the start date is a date prior to the end date.

Drop me a line if you have issues. :)

ALSO! Be aware that the platform has request limits. If you don't follow them your IP could be banned temporarily (or worse!). When I queried over 6 years, I started 6 processes with a sleep 60 command between each process launch. Here is the command I used:

go run go/cmd/binanceklines.go --start 20230101 --end 20231101 && sleep 60 && \
go run go/cmd/binanceklines.go --start 20220101 --end 20230101 && sleep 60 && \
go run go/cmd/binanceklines.go --start 20210101 --end 20220101 && sleep 60 && \
go run go/cmd/binanceklines.go --start 20200101 --end 20210101 && sleep 60 && \
go run go/cmd/binanceklines.go --start 20190101 --end 20200101 && sleep 60 && \
go run go/cmd/binanceklines.go --start 20180101 --end 20190101

At the end of the extraction run

ls data/volumes

and if it worked, you should have something similar to

% ls data/volumes
BTCUSDT_20231001.csv    BTCUSDT_20231006.csv    BTCUSDT_20231011.csv    BTCUSDT_20231016.csv    BTCUSDT_20231021.csv    BTCUSDT_20231026.csv    BTCUSDT_20231031.csv
BTCUSDT_20231002.csv    BTCUSDT_20231007.csv    BTCUSDT_20231012.csv    BTCUSDT_20231017.csv    BTCUSDT_20231022.csv    BTCUSDT_20231027.csv
BTCUSDT_20231003.csv    BTCUSDT_20231008.csv    BTCUSDT_20231013.csv    BTCUSDT_20231018.csv    BTCUSDT_20231023.csv    BTCUSDT_20231028.csv
BTCUSDT_20231004.csv    BTCUSDT_20231009.csv    BTCUSDT_20231014.csv    BTCUSDT_20231019.csv    BTCUSDT_20231024.csv    BTCUSDT_20231029.csv
BTCUSDT_20231005.csv    BTCUSDT_20231010.csv    BTCUSDT_20231015.csv    BTCUSDT_20231020.csv    BTCUSDT_20231025.csv    BTCUSDT_20231030.csv

Finally, you need to concatenate the data before running the notebook. You can use the command

cd data/volumes && cat $(ls *) > ../concatenated/BTCUSDT_20180101_20231101.csv && cd -

And check with

ls data/concatenated 

if it worked, you should have something similar to

% ls data/concatenated 
BTCUSDT_20180101_20231101.csv

Now you can play with the notebook!