forked from open-spaced-repetition/srs-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript.py
423 lines (377 loc) · 14.1 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import os
import sys
import json
import numpy as np
import pandas as pd
from tqdm import tqdm
from pathlib import Path
import matplotlib.pyplot as plt
from sklearn.model_selection import TimeSeriesSplit
from sklearn.metrics import root_mean_squared_error, log_loss, roc_auc_score
from statsmodels.nonparametric.smoothers_lowess import lowess
from concurrent.futures import ProcessPoolExecutor, as_completed
from itertools import accumulate
import torch
dev_mode = os.environ.get("DEV_MODE")
if dev_mode:
# for local development
sys.path.insert(0, os.path.abspath("../fsrs-optimizer/src/fsrs_optimizer/"))
from fsrs_optimizer import (
Optimizer,
Trainer,
FSRS,
Collection,
power_forgetting_curve,
remove_outliers,
remove_non_continuous_rows,
plot_brier,
rmse_matrix,
)
model = FSRS
optimizer = Optimizer()
lr: float = 4e-2
n_epoch: int = 5
n_splits: int = 5
batch_size: int = 512
verbose: bool = False
verbose_inadequate_data: bool = False
do_fullinfo_stats: bool = False
dry_run = os.environ.get("DRY_RUN")
only_pretrain = os.environ.get("PRETRAIN")
rust = os.environ.get("FSRS_RS")
if rust:
path = "FSRS-rs"
if do_fullinfo_stats:
path += "-fullinfo"
from anki._backend import RustBackend
backend = RustBackend()
else:
path = "FSRS-5"
if dry_run:
path += "-dry-run"
if only_pretrain:
path += "-pretrain"
if dev_mode:
path += "-dev"
if do_fullinfo_stats:
path += "-fullinfo"
def predict(w_list, testsets, file=None):
p = []
y = []
save_tmp = [] if file else None
for i, (w, testset) in enumerate(zip(w_list, testsets)):
my_collection = Collection(w)
testset["stability"], testset["difficulty"] = my_collection.batch_predict(testset)
testset["p"] = power_forgetting_curve(testset["delta_t"], testset["stability"])
p.extend(testset["p"].tolist())
y.extend(testset["y"].tolist())
if file:
save_tmp.append(testset)
if file:
save_tmp = pd.concat(save_tmp)
del save_tmp["tensor"]
if os.environ.get("FILE"):
save_tmp.to_csv(f"evaluation/{path}/{file.stem}.tsv", sep="\t", index=False)
return p, y, save_tmp
def convert_to_items(df): # -> list[FsrsItem]
from anki.collection import FsrsItem, FsrsReview
def accumulate(group):
items = []
for _, row in group.iterrows():
t_history = [max(0, int(t)) for t in row["t_history"].split(",")] + [
row["delta_t"]
]
r_history = [int(t) for t in row["r_history"].split(",")] + [row["rating"]]
items.append(
FsrsItem(
reviews=[
FsrsReview(delta_t=int(x[0]), rating=int(x[1]))
for x in zip(t_history, r_history)
]
)
)
return items
result_list = sum(
df.sort_values(by=["card_id", "review_th"])
.groupby("card_id")
.apply(accumulate)
.tolist(),
[],
)
return result_list
def cum_concat(x):
return list(accumulate(x))
def create_time_series(df):
df = df[df["rating"].isin([1, 2, 3, 4])]
df = df.groupby("card_id").apply(lambda x: x.head(128)).reset_index(drop=True)
df["i"] = df.groupby("card_id").cumcount() + 1
t_history_list = df.groupby("card_id", group_keys=False)["delta_t"].apply(
lambda x: cum_concat([[max(0, i)] for i in x])
)
r_history_list = df.groupby("card_id", group_keys=False)["rating"].apply(
lambda x: cum_concat([[i] for i in x])
)
df["r_history"] = [
",".join(map(str, item[:-1])) for sublist in r_history_list for item in sublist
]
df["t_history"] = [
",".join(map(str, item[:-1])) for sublist in t_history_list for item in sublist
]
df["tensor"] = [
torch.tensor((t_item[:-1], r_item[:-1])).transpose(0, 1)
for t_sublist, r_sublist in zip(t_history_list, r_history_list)
for t_item, r_item in zip(t_sublist, r_sublist)
]
last_rating = []
for t_sublist, r_sublist in zip(t_history_list, r_history_list):
for t_history, r_history in zip(t_sublist, r_sublist):
flag = True
for t, r in zip(reversed(t_history[:-1]), reversed(r_history[:-1])):
if t > 0:
last_rating.append(r)
flag = False
break
if flag:
last_rating.append(r_history[0])
df["last_rating"] = last_rating
df["y"] = df["rating"].map(lambda x: {1: 0, 2: 1, 3: 1, 4: 1}[x])
df = df[df["delta_t"] != 0].copy()
df["i"] = df.groupby("card_id").cumcount() + 1
df["first_rating"] = df["r_history"].map(lambda x: x[0] if len(x) > 0 else "")
filtered_dataset = (
df[df["i"] == 2]
.groupby(by=["first_rating"], as_index=False, group_keys=False)[df.columns]
.apply(remove_outliers)
)
if filtered_dataset.empty:
return pd.DataFrame()
df[df["i"] == 2] = filtered_dataset
df.dropna(inplace=True)
df = df.groupby("card_id", as_index=False, group_keys=False)[df.columns].apply(
remove_non_continuous_rows
)
return df[df["delta_t"] > 0].sort_values(by=["review_th"])
def process(file):
plt.close("all")
dataset = pd.read_csv(file)
dataset = create_time_series(dataset)
if dataset.shape[0] < 6:
raise Exception(f"{file.stem} does not have enough data.")
w_list = []
trainsets = []
testsets = []
sizes = []
if do_fullinfo_stats:
loop = range(3, len(dataset))
else:
tscv = TimeSeriesSplit(n_splits=n_splits)
loop = tscv.split(dataset)
for loop_args in loop:
if do_fullinfo_stats:
i: int = loop_args # type: ignore
# Set this_train_size to be a power of 2
this_train_size = 2**i
train_index = np.array(list(range(this_train_size)))
test_index = np.array(
list(range(this_train_size, this_train_size + this_train_size // 4 + 1))
)
if test_index[-1] >= len(dataset):
break
else:
train_index, test_index = loop_args # type: ignore
optimizer.define_model()
test_set = dataset.iloc[test_index].copy()
train_set = dataset.iloc[train_index].copy()
if dry_run:
w_list.append(optimizer.init_w)
sizes.append(len(train_index))
testsets.append(test_set)
if do_fullinfo_stats:
trainsets.append(train_set)
continue
# train_set.loc[train_set["i"] == 2, "delta_t"] = train_set.loc[train_set["i"] == 2, "delta_t"].map(lambda x: max(1, round(x)))
try:
if rust:
train_set_items = convert_to_items(train_set[train_set["i"] >= 2])
parameters = backend.benchmark(train_set_items)
w_list.append(parameters)
else:
optimizer.S0_dataset_group = (
train_set[train_set["i"] == 2]
.groupby(by=["first_rating", "delta_t"], group_keys=False)
# .groupby(by=["r_history", "delta_t"], group_keys=False)
.agg({"y": ["mean", "count"]})
.reset_index()
)
_ = optimizer.pretrain(dataset=train_set, verbose=verbose)
if only_pretrain:
w_list.append(optimizer.init_w)
else:
trainer = Trainer(
train_set,
None,
optimizer.init_w,
n_epoch=n_epoch,
lr=lr,
batch_size=batch_size,
)
w_list.append(trainer.train(verbose=verbose))
# No error, so training data was adequate
sizes.append(len(train_set))
testsets.append(test_set)
if do_fullinfo_stats:
trainsets.append(train_set)
except Exception as e:
if str(e).endswith("inadequate."):
if verbose_inadequate_data:
print("Skipping - Inadequate data")
else:
print("User:", file.stem, "Error:", e)
if not do_fullinfo_stats:
# Default behavior is to use the default parameters if it cannot optimise
w_list.append(optimizer.init_w)
sizes.append(len(train_set))
testsets.append(test_set)
if do_fullinfo_stats:
trainsets.append(train_set) # Kept for readability
else:
# If we are doing fullinfo stats, we will be stricter - no default parameters are saved for optimised FSRS if optimisation fails
pass
if len(w_list) == 0:
print("No data for", file.stem)
return
if do_fullinfo_stats:
all_p = []
all_y = []
all_evaluation = []
last_y = []
for i in range(len(w_list)):
p, y, evaluation = predict([w_list[i]], [testsets[i]], file=file)
all_p.append(p)
all_y.append(y)
all_evaluation.append(evaluation)
last_y = y
ici = None
rmse_raw = [
root_mean_squared_error(y_true=e_t, y_pred=e_p)
for e_t, e_p in zip(all_y, all_p)
]
logloss = [
log_loss(y_true=e_t, y_pred=e_p, labels=[0, 1])
for e_t, e_p in zip(all_y, all_p)
]
rmse_bins = [rmse_matrix(e) for e in all_evaluation]
all_p = []
all_y = []
all_evaluation = []
for i in range(len(w_list)):
p, y, evaluation = predict([w_list[i]], [trainsets[i]], file=file)
all_p.append(p)
all_y.append(y)
all_evaluation.append(evaluation)
rmse_raw_train = [
root_mean_squared_error(y_true=e_t, y_pred=e_p)
for e_t, e_p in zip(all_y, all_p)
]
logloss_train = [
log_loss(y_true=e_t, y_pred=e_p, labels=[0, 1])
for e_t, e_p in zip(all_y, all_p)
]
rmse_bins_train = [rmse_matrix(e) for e in all_evaluation]
else:
p, y, evaluation = predict(w_list, testsets, file=file)
last_y = y
if os.environ.get("PLOT"):
fig = plt.figure()
plot_brier(p, y, ax=fig.add_subplot(111))
fig.savefig(f"evaluation/{path}/{file.stem}.png")
p_calibrated = lowess(
y, p, it=0, delta=0.01 * (max(p) - min(p)), return_sorted=False
)
ici = np.mean(np.abs(p_calibrated - p))
rmse_raw = root_mean_squared_error(y_true=y, y_pred=p)
logloss = log_loss(y_true=y, y_pred=p, labels=[0, 1])
rmse_bins = rmse_matrix(evaluation)
try:
auc = round(roc_auc_score(y_true=y, y_score=p), 6)
except:
auc = None
rmse_raw_train = None
logloss_train = None
rmse_bins_train = None
result = {
"metrics": {
"RMSE": round(rmse_raw, 6),
"LogLoss": round(logloss, 6),
"RMSE(bins)": round(rmse_bins, 6),
"ICI": round(ici, 6),
"AUC": auc,
},
"user": int(file.stem),
"size": len(last_y),
"parameters": list(map(lambda x: round(x, 4), w_list[-1])),
}
if do_fullinfo_stats:
result["metrics"]["TrainSizes"] = sizes
result["metrics"]["RMSETrain"] = round(rmse_raw_train, 6)
result["metrics"]["LogLossTrain"] = round(logloss_train, 6)
result["metrics"]["RMSE(bins)Train"] = round(rmse_bins_train, 6)
result["allparameters"] = [list(w) for w in w_list]
if os.environ.get("RAW"):
raw = {
"user": int(file.stem),
"p": list(map(lambda x: round(x, 4), p)),
"y": list(map(int, y)),
}
else:
raw = None
return result, raw
def sort_jsonl(file):
data = list(map(lambda x: json.loads(x), open(file).readlines()))
data.sort(key=lambda x: x["user"])
with file.open("w", encoding="utf-8") as jsonl_file:
for json_data in data:
jsonl_file.write(json.dumps(json_data, ensure_ascii=False) + "\n")
return data
if __name__ == "__main__":
unprocessed_files = []
dataset_path0 = "./dataset/"
dataset_path1 = "../FSRS-Anki-20k/dataset/1/"
dataset_path2 = "../FSRS-Anki-20k/dataset/2/"
Path(f"evaluation/{path}").mkdir(parents=True, exist_ok=True)
Path("result").mkdir(parents=True, exist_ok=True)
Path("raw").mkdir(parents=True, exist_ok=True)
result_file = Path(f"result/{path}.jsonl")
raw_file = Path(f"raw/{path}.jsonl")
if result_file.exists():
data = sort_jsonl(result_file)
processed_user = set(map(lambda x: x["user"], data))
else:
processed_user = set()
if os.environ.get("RAW") and raw_file.exists():
sort_jsonl(raw_file)
for dataset_path in [dataset_path0, dataset_path1, dataset_path2]:
for file in Path(dataset_path).glob("*.csv"):
if int(file.stem) in processed_user:
continue
unprocessed_files.append(file)
unprocessed_files.sort(key=lambda x: int(x.stem), reverse=False)
num_threads = int(os.environ.get("THREADS", "4"))
with ProcessPoolExecutor(max_workers=num_threads) as executor:
futures = [executor.submit(process, file) for file in unprocessed_files]
for future in (
pbar := tqdm(as_completed(futures), total=len(futures), smoothing=0.03)
):
try:
result, raw = future.result()
with open(result_file, "a") as f:
f.write(json.dumps(result, ensure_ascii=False) + "\n")
if raw:
with open(raw_file, "a") as f:
f.write(json.dumps(raw, ensure_ascii=False) + "\n")
pbar.set_description(f"Processed {result['user']}")
except Exception as e:
tqdm.write(str(e))
sort_jsonl(result_file)
if os.environ.get("RAW"):
sort_jsonl(raw_file)