-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathcastryck_decru_shortcut.sage
122 lines (100 loc) · 4.01 KB
/
castryck_decru_shortcut.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Python imports
import time
from itertools import product
# Local Imports
from helpers import possibly_parallel, supersingular_gens, fast_log3
from richelot_aux import AuxiliaryIsogeny, Does22ChainSplit, Pushing3Chain
from uvtable import uvtable
# Load Sage Files
load('speedup.sage')
# ===================================
# ===== ATTACK ====================
# ===================================
def CastryckDecruAttack(E_start, P2, Q2, EB, PB, QB, two_i, num_cores=1):
tim = time.time()
skB = [] # TERNARY DIGITS IN EXPANSION OF BOB'S SECRET KEY
# gathering the alpha_i, u, v from table
expdata = [[0, 0, 0] for _ in range(b-3)]
for i in range(b%2, b-3, 2):
index = (b-i) // 2
row = uvtable[index-1]
if row[1] <= a:
expdata[i] = row[1:4]
# gather digits until beta_1
bet1 = 0
while not expdata[bet1][0]:
bet1 += 1
bet1 += 1
ai,u,v = expdata[bet1-1]
print(f"Determination of first {bet1} ternary digits. We are working with 2^{ai}-torsion.")
bi = b - bet1
alp = a - ai
@possibly_parallel(num_cores)
def CheckGuess(first_digits):
print(f"Testing digits: {first_digits}")
scalar = sum(3^k*d for k,d in enumerate(first_digits))
tauhatkernel = 3^bi * (P3 + scalar*Q3)
tauhatkernel_distort = u*tauhatkernel + v*two_i(tauhatkernel)
C, P_c, Q_c, chainC = AuxiliaryIsogeny(bet1, u, v, E_start, P2, Q2, tauhatkernel, two_i)
# We have a diagram
# C <- Eguess <- E_start
# | |
# v v
# CB-> EB
split = Does22ChainSplit(C, EB, 2^alp*P_c, 2^alp*Q_c, 2^alp*PB, 2^alp*QB, ai)
if split:
Eguess, _ = Pushing3Chain(E_start, tauhatkernel, bet1)
chain, (E1, E2) = split
# Compute the 3^b torsion in C
P3c = chainC(P3)
Q3c = chainC(Q3)
# Map it through the (2,2)-isogeny chain
if E2.j_invariant() == Eguess.j_invariant():
CB, index = E1, 0
else:
CB, index = E2, 1
def apply_chain(c, X):
X = (X, None) # map point to C x {O_EB}
for f in c:
X = f(X)
return X[index]
print("Computing image of 3-adic torsion in split factor CB")
P3c_CB = apply_chain(chain, P3c)
Q3c_CB = apply_chain(chain, Q3c)
Z3 = Zmod(3^b)
# Determine kernel of the 3^b isogeny.
# The projection to CB must have 3-adic rank 1.
# To compute the kernel we choose a symplectic basis of the
# 3-torsion at the destination, and compute Weil pairings.
CB.set_order((p+1)^2, num_checks=1) # keep sanity check
P_CB, Q_CB = supersingular_gens(CB)
P3_CB = ((p+1) / 3^b) * P_CB
Q3_CB = ((p+1) / 3^b) * Q_CB
w = P3_CB.weil_pairing(Q3_CB, 3^b)
# Compute kernel
for G in (P3_CB, Q3_CB):
xP = fast_log3(P3c_CB.weil_pairing(G, 3^b), w)
xQ = fast_log3(Q3c_CB.weil_pairing(G, 3^b), w)
if xQ % 3 != 0:
sk = int(-Z3(xP) / Z3(xQ))
return sk
return True
guesses = [ZZ(i).digits(3, padto=bet1) for i in range(3^bet1)]
for result in CheckGuess(guesses):
((first_digits,), _), sk = result
if sk is not None:
print("Glue-and-split! These are most likely the secret digits.")
bobskey = sk
break
# Sanity check
bobscurve, _ = Pushing3Chain(E_start, P3 + bobskey*Q3, b)
found = bobscurve.j_invariant() == EB.j_invariant()
if found:
print(f"Bob's secret key revealed as: {bobskey}")
print(f"In ternary, this is: {Integer(bobskey).digits(base=3)}")
print(f"Altogether this took {time.time() - tim} seconds.")
return bobskey
else:
print("Something went wrong.")
print(f"Altogether this took {time.time() - tim} seconds.")
return None