-
Notifications
You must be signed in to change notification settings - Fork 11
/
Google Earth Images Classification using CNN in Keras.py
64 lines (49 loc) · 2.09 KB
/
Google Earth Images Classification using CNN in Keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 19 17:53:04 2019
@author: Zaheer Abbas
"""
# Part 1 :- Building CNN
# importing Keras libraries and packages
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
# initializing CNN
classifier = Sequential()
# step - 1 Connvolution
classifier.add(Convolution2D(32, 3, 3, input_shape = (64,64,3), activation = 'relu'))
# step - 2 Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Adding second Connvolution layer and pooling layer
classifier.add(Convolution2D(32, 3, 3, activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# step - 3 Falttening
classifier.add(Flatten())
# step - 4 full connection
classifier.add(Dense(output_dim = 128, activation = 'relu'))
classifier.add(Dense(output_dim = 1, activation = 'sigmoid'))
# compiling
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# fitting CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory('images_data/training_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
test_set = test_datagen.flow_from_directory('images_data/test_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
classifier.fit_generator(training_set,
steps_per_epoch=700,
epochs=15,
validation_data=test_set,
validation_steps=500)