-
Notifications
You must be signed in to change notification settings - Fork 6
/
mesh_sampling.py
executable file
·289 lines (228 loc) · 9.78 KB
/
mesh_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
### Code obtained and modified from https://github.com/anuragranj/coma, Copyright (c) 2018 Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, Michael J. Black and the Max Planck Gesellschaft
import math
import heapq
import numpy as np
import os
import scipy.sparse as sp
from scipy import spatial
try:
import psbody.mesh
found = True
except ImportError:
found = False
if found:
from psbody.mesh import Mesh
#from psbody.mesh.topology.decimation import vertex_quadrics
def vertex_quadrics(mesh):
"""Computes a quadric for each vertex in the Mesh.
Returns:
v_quadrics: an (N x 4 x 4) array, where N is # vertices.
"""
# Allocate quadrics
v_quadrics = np.zeros((len(mesh.v), 4, 4,))
# For each face...
for f_idx in range(len(mesh.f)):
# Compute normalized plane equation for that face
vert_idxs = mesh.f[f_idx]
verts = np.hstack((mesh.v[vert_idxs], np.array([1, 1, 1]).reshape(-1, 1)))
u, s, v = np.linalg.svd(verts)
eq = v[-1, :].reshape(-1, 1)
eq = eq / (np.linalg.norm(eq[0:3]))
# Add the outer product of the plane equation to the
# quadrics of the vertices for this face
for k in range(3):
v_quadrics[mesh.f[f_idx, k], :, :] += np.outer(eq, eq)
return v_quadrics
def setup_deformation_transfer(source, target, use_normals=False):
rows = np.zeros(3 * target.v.shape[0])
cols = np.zeros(3 * target.v.shape[0])
coeffs_v = np.zeros(3 * target.v.shape[0])
coeffs_n = np.zeros(3 * target.v.shape[0])
nearest_faces, nearest_parts, nearest_vertices = source.compute_aabb_tree().nearest(target.v, True)
nearest_faces = nearest_faces.ravel().astype(np.int64)
nearest_parts = nearest_parts.ravel().astype(np.int64)
nearest_vertices = nearest_vertices.ravel()
for i in range(target.v.shape[0]):
# Closest triangle index
f_id = nearest_faces[i]
# Closest triangle vertex ids
nearest_f = source.f[f_id]
# Closest surface point
nearest_v = nearest_vertices[3 * i:3 * i + 3]
# Distance vector to the closest surface point
dist_vec = target.v[i] - nearest_v
rows[3 * i:3 * i + 3] = i * np.ones(3)
cols[3 * i:3 * i + 3] = nearest_f
n_id = nearest_parts[i]
if n_id == 0:
# Closest surface point in triangle
A = np.vstack((source.v[nearest_f])).T
coeffs_v[3 * i:3 * i + 3] = np.linalg.lstsq(A, nearest_v)[0]
elif n_id > 0 and n_id <= 3:
# Closest surface point on edge
A = np.vstack((source.v[nearest_f[n_id - 1]], source.v[nearest_f[n_id % 3]])).T
tmp_coeffs = np.linalg.lstsq(A, target.v[i])[0]
coeffs_v[3 * i + n_id - 1] = tmp_coeffs[0]
coeffs_v[3 * i + n_id % 3] = tmp_coeffs[1]
else:
# Closest surface point a vertex
coeffs_v[3 * i + n_id - 4] = 1.0
# if use_normals:
# A = np.vstack((vn[nearest_f])).T
# coeffs_n[3 * i:3 * i + 3] = np.linalg.lstsq(A, dist_vec)[0]
#coeffs = np.hstack((coeffs_v, coeffs_n))
#rows = np.hstack((rows, rows))
#cols = np.hstack((cols, source.v.shape[0] + cols))
matrix = sp.csc_matrix((coeffs_v, (rows, cols)), shape=(target.v.shape[0], source.v.shape[0]))
return matrix
def qslim_decimator_transformer(mesh, factor=None, n_verts_desired=None):
from opendr.topology import get_vertices_per_edge
"""Return a simplified version of this mesh.
A Qslim-style approach is used here.
:param factor: fraction of the original vertices to retain
:param n_verts_desired: number of the original vertices to retain
:returns: new_faces: An Fx3 array of faces, mtx: Transformation matrix
"""
if factor is None and n_verts_desired is None:
raise Exception('Need either factor or n_verts_desired.')
if n_verts_desired is None:
n_verts_desired = math.ceil(len(mesh.v) * factor)
Qv = vertex_quadrics(mesh)
# fill out a sparse matrix indicating vertex-vertex adjacency
# from psbody.mesh.topology.connectivity import get_vertices_per_edge
vert_adj = get_vertices_per_edge(mesh.v, mesh.f)
# vert_adj = sp.lil_matrix((len(mesh.v), len(mesh.v)))
# for f_idx in range(len(mesh.f)):
# vert_adj[mesh.f[f_idx], mesh.f[f_idx]] = 1
vert_adj = sp.csc_matrix((vert_adj[:, 0] * 0 + 1, (vert_adj[:, 0], vert_adj[:, 1])), shape=(len(mesh.v), len(mesh.v)))
vert_adj = vert_adj + vert_adj.T
vert_adj = vert_adj.tocoo()
def collapse_cost(Qv, r, c, v):
Qsum = Qv[r, :, :] + Qv[c, :, :]
p1 = np.vstack((v[r].reshape(-1, 1), np.array([1]).reshape(-1, 1)))
p2 = np.vstack((v[c].reshape(-1, 1), np.array([1]).reshape(-1, 1)))
destroy_c_cost = p1.T.dot(Qsum).dot(p1)
destroy_r_cost = p2.T.dot(Qsum).dot(p2)
result = {
'destroy_c_cost': destroy_c_cost,
'destroy_r_cost': destroy_r_cost,
'collapse_cost': min([destroy_c_cost, destroy_r_cost]),
'Qsum': Qsum}
return result
# construct a queue of edges with costs
queue = []
for k in range(vert_adj.nnz):
r = vert_adj.row[k]
c = vert_adj.col[k]
if r > c:
continue
cost = collapse_cost(Qv, r, c, mesh.v)['collapse_cost']
heapq.heappush(queue, (cost, (r, c)))
# decimate
collapse_list = []
nverts_total = len(mesh.v)
faces = mesh.f.copy()
while nverts_total > n_verts_desired:
e = heapq.heappop(queue)
r = e[1][0]
c = e[1][1]
if r == c:
continue
cost = collapse_cost(Qv, r, c, mesh.v)
if cost['collapse_cost'] > e[0]:
heapq.heappush(queue, (cost['collapse_cost'], e[1]))
# print 'found outdated cost, %.2f < %.2f' % (e[0], cost['collapse_cost'])
continue
else:
# update old vert idxs to new one,
# in queue and in face list
if cost['destroy_c_cost'] < cost['destroy_r_cost']:
to_destroy = c
to_keep = r
else:
to_destroy = r
to_keep = c
collapse_list.append([to_keep, to_destroy])
# in our face array, replace "to_destroy" vertidx with "to_keep" vertidx
np.place(faces, faces == to_destroy, to_keep)
# same for queue
which1 = [idx for idx in range(len(queue)) if queue[idx][1][0] == to_destroy]
which2 = [idx for idx in range(len(queue)) if queue[idx][1][1] == to_destroy]
for k in which1:
queue[k] = (queue[k][0], (to_keep, queue[k][1][1]))
for k in which2:
queue[k] = (queue[k][0], (queue[k][1][0], to_keep))
Qv[r, :, :] = cost['Qsum']
Qv[c, :, :] = cost['Qsum']
a = faces[:, 0] == faces[:, 1]
b = faces[:, 1] == faces[:, 2]
c = faces[:, 2] == faces[:, 0]
# remove degenerate faces
def logical_or3(x, y, z):
return np.logical_or(x, np.logical_or(y, z))
faces_to_keep = np.logical_not(logical_or3(a, b, c))
faces = faces[faces_to_keep, :].copy()
nverts_total = (len(np.unique(faces.flatten())))
new_faces, mtx = _get_sparse_transform(faces, len(mesh.v))
return new_faces, mtx
def _get_sparse_transform(faces, num_original_verts):
verts_left = np.unique(faces.flatten())
IS = np.arange(len(verts_left))
JS = verts_left
data = np.ones(len(JS))
mp = np.arange(0, np.max(faces.flatten()) + 1)
mp[JS] = IS
new_faces = mp[faces.copy().flatten()].reshape((-1, 3))
ij = np.vstack((IS.flatten(), JS.flatten()))
mtx = sp.csc_matrix((data, ij), shape=(len(verts_left) , num_original_verts ))
return (new_faces, mtx)
def generate_transform_matrices(mesh, factors):
from opendr.topology import get_vert_connectivity
"""Generates len(factors) meshes, each of them is scaled by factors[i] and
computes the transformations between them.
Returns:
M: a set of meshes downsampled from mesh by a factor specified in factors.
A: Adjacency matrix for each of the meshes
D: Downsampling transforms between each of the meshes
U: Upsampling transforms between each of the meshes
"""
factors = map(lambda x: 1.0/x, factors)
M,A,D,U = [], [], [], []
## sergey code
F = []
##
A.append(get_vert_connectivity(mesh.v, mesh.f))
M.append(mesh)
i = 0
for factor in factors:
ds_f, ds_D = qslim_decimator_transformer(M[-1], factor=factor)
D.append(ds_D)
##
F.append(ds_f)
##
new_mesh_v = ds_D.dot(M[-1].v)
new_mesh = Mesh(v=new_mesh_v,f=ds_f)
M.append(new_mesh)
A.append(get_vert_connectivity(new_mesh.v, new_mesh.f))
U.append(setup_deformation_transfer(M[-1], M[-2]))
print('decimation %d by factor %.2f finished' %(i,factor))
i+=1
return M,A,D,U, F
def generate_transform_matrices_given_downsamples(mesh, downsample_directory, num_downsamples=4):
from opendr.topology import get_vert_connectivity
M,A,D,U,F = [],[],[],[],[]
A.append(get_vert_connectivity(mesh.v,mesh.f))
M.append(mesh)
for i in range(1,num_downsamples+1):
cur_M = Mesh(filename=os.path.join(downsample_directory,'template_d{0}.obj'.format(i)))
cur_D = np.zeros((cur_M.v.shape[0], M[-1].v.shape[0]))
kd = spatial.KDTree(np.array(M[-1].v))
for vi in range(cur_M.v.shape[0]):
_, u = kd.query(cur_M.v[vi])
cur_D[vi,u] = 1.0
M.append(cur_M)
D.append(sp.csr_matrix(cur_D))
F.append(cur_M.f)
A.append(get_vert_connectivity(cur_M.v,cur_M.f))
U.append(setup_deformation_transfer(M[-1],M[-2]))
return M, A, D, U, F