-
Notifications
You must be signed in to change notification settings - Fork 124
/
Copy pathCryptol.cry
1106 lines (902 loc) · 30.1 KB
/
Cryptol.cry
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2013-2020 Galois, Inc.
* Distributed under the terms of the BSD3 license (see LICENSE file)
*/
module Cryptol where
infixr 5 ==>
infixr 10 \/
infixr 15 /\
infix 20 ==, ===, !=, !==
infix 30 >, >=, <, <=, <$, >$, <=$, >=$
infixr 40 ||
infixl 45 ^
infixr 50 &&
infixr 60 #
infixl 70 <<, <<<, >>, >>>, >>$
infixl 80 +, -
infixl 90 *, /, %, /$, %$, %^, /^
infixr 95 ^^
infixl 100 @, @@, !, !!
// Base types -----------------------------------------------------------------------
/** The type of boolean values. */
primitive type Bit : *
/** The type of unbounded integers. */
primitive type Integer : *
/**
* 'Z n' is the type of integers, modulo 'n'.
*
* The values of 'Z n' may be thought of as equivalance
* classes of integers according to the equivalence
* 'x ~ y' iff 'n' divides 'x - y'. 'Z n' naturally
* forms a ring, but does not support integral division
* or indexing.
*
* However, you may use the 'fromZ' operation
* to project values in 'Z n' into the integers if such operations
* are required. This will compute the reduced representative
* of the equivalance class. In other words, 'fromZ' computes
* the (unique) integer value 'i' where '0 <= i < n' and
* 'i' is in the given equivalance class.
*/
primitive type {n : #} (fin n, n >= 1) => Z n : *
/**
* 'Rational' is the type of rational numbers.
* Rational numbers form a Field (and thus a Ring).
*
* The 'ratio' operation may be used to directly create
* rational values from as a ratio of integers, or
* the 'fromInteger' method and the field operations
* can be used.
*/
primitive type Rational : *
type Bool = Bit
type Word n = [n]
type Char = [8]
type String n = [n]Char
// Numeric operators and constraints ----------------------------------------------
/** A numeric type representing infinity. */
primitive type inf : #
/** Assert that two numeric types are equal. */
primitive type (==) : # -> # -> Prop
/** Assert that two numeric types are different. */
primitive type (!=) : # -> # -> Prop
/** Assert that the first numeric type is larger than, or equal to the second.*/
primitive type (>=) : # -> # -> Prop
/** Assert that a numeric type is a proper natural number (not 'inf'). */
primitive type fin : # -> Prop
/** Add numeric types. */
primitive type (+) : # -> # -> #
/** Multiply numeric types. */
primitive type (*) : # -> # -> #
/** Subtract numeric types. */
primitive type
{m : #, n : # }
(fin n, m >= n) =>
m - n : #
/** Divide numeric types, rounding down. */
primitive type
{ m : #, n : # }
(fin m, n >= 1) =>
m / n : #
/** Remainder of numeric type division. */
primitive type
{ m : #, n : # }
(fin m, n >= 1) =>
m % n : #
/** Exponentiate numeric types. */
primitive type (^^) : # -> # -> #
/** The number of bits required to represent the value of a numeric type. */
primitive type width : # -> #
/**
* Define the base 2 logarithm function in terms of width
*/
type lg2 n = width (max n 1 - 1)
/** The smaller of two numeric types. */
primitive type min : # -> # -> #
/** The larger of two numeric types. */
primitive type max : # -> # -> #
/** Divide numeric types, rounding up. */
primitive type
{ m : #, n : # }
(fin m, fin n, n >= 1) =>
m /^ n : #
/** How much we need to add to make a proper multiple of the second argument. */
primitive type
{ m : #, n : # }
(fin m, fin n, n >= 1) =>
m %^ n : #
/** The length of an enumeration. */
primitive type
{ start : #, next : #, last : # }
(fin start, fin next, fin last, start != next) =>
lengthFromThenTo start next last : #
/**
* Assert that the first numeric type is less than or equal to the second.
*/
type constraint i <= j = (j >= i)
/**
* Assert that the first numeric type is greater than the second.
*/
type constraint i > j = i >= j + 1
/**
* Assert that the first numeric type is less than the second.
*/
type constraint i < j = j >= i + 1
// The Literal class ----------------------------------------------------
/** 'Literal n a' asserts that type 'a' contains the number 'n'. */
primitive type Literal : # -> * -> Prop
/**
* The value corresponding to a numeric type.
*/
primitive number : {val, rep} Literal val rep => rep
/**
* An alternative name for 'number', present for backward compatibility.
*/
demote : {val, rep} Literal val rep => rep
demote = number`{val}
/**
* Return the length of a sequence. Note that the result depends only
* on the type of the argument, not its value.
*/
length : {n, a, b} (fin n, Literal n b) => [n]a -> b
length _ = `n
/**
* A finite sequence counting up from 'first' to 'last'.
*
* '[a..b]' is syntactic sugar for 'fromTo`{first=a,last=b}'.
*/
primitive fromTo : {first, last, a} (fin last, last >= first,
Literal first a, Literal last a) =>
[1 + (last - first)]a
/**
* A finite arithmetic sequence starting with 'first' and 'next',
* stopping when the values reach or would skip over 'last'.
*
* '[a,b..c]' is syntactic sugar for 'fromThenTo`{first=a,next=b,last=c}'.
*/
primitive fromThenTo : {first, next, last, a, len}
( fin first, fin next, fin last
, Literal first a, Literal next a, Literal last a
, first != next
, lengthFromThenTo first next last == len) => [len]a
// Fractional Literals ---------------------
/** 'FLiteral m n r a' asserts that the type `a' contains the
fraction `m/n`. The flag `r` indicates if we should round (`r >= 1`)
or report an error if the number can't be represented exactly. */
primitive type FLiteral : # -> # -> # -> * -> Prop
/** A fractional literal corresponding to `m/n` */
primitive
fraction : { m, n, r, a } FLiteral m n r a => a
// The Zero class -------------------------------------------------------
/** Value types that have a notion of 'zero'. */
primitive type Zero : * -> Prop
/**
* Gives an arbitrary shaped value whose bits are all False.
* ~zero likewise gives an arbitrary shaped value whose bits are all True.
*/
primitive zero : {a} (Zero a) => a
// The Logic class ------------------------------------------------------
/** Value types that support logical operations. */
primitive type Logic : * -> Prop
/**
* Logical 'and' over bits. Extends element-wise over sequences, tuples.
*/
primitive (&&) : {a} (Logic a) => a -> a -> a
/**
* Logical 'or' over bits. Extends element-wise over sequences, tuples.
*/
primitive (||) : {a} (Logic a) => a -> a -> a
/**
* Logical 'exclusive or' over bits. Extends element-wise over sequences, tuples.
*/
primitive (^) : {a} (Logic a) => a -> a -> a
/**
* Bitwise complement. The prefix notation '~ x'
* is syntactic sugar for 'complement x'.
*/
primitive complement : {a} (Logic a) => a -> a
// The Ring class -------------------------------------------------------
/**
* Value types that support ring addition and multiplication.
*
* Floating-point values are only approximately a ring, but
* nonetheless inhabit this class.
*/
primitive type Ring : * -> Prop
/**
* Converts an unbounded integer to a value in a Ring. When converting
* to the bitvector type [n], the value is reduced modulo 2^^n. Likewise,
* when converting to Z n, the value is reduced modulo n. When converting
* to a floating-point value, the value is rounded to the nearest
* representable value.
*/
primitive fromInteger : {a} (Ring a) => Integer -> a
/**
* Add two values.
* * For type [n], addition is modulo 2^^n.
* * Structured values are added element-wise.
*/
primitive (+) : {a} (Ring a) => a -> a -> a
/**
* Subtract two values.
* * For type [n], subtraction is modulo 2^^n.
* * Structured values are subtracted element-wise.
* * Satisfies 'a - b = a + negate b'.
* See also: 'negate'.
*/
primitive (-) : {a} (Ring a) => a -> a -> a
/**
* Multiply two values.
* * For type [n], multiplication is modulo 2^^n.
* * Structured values are multiplied element-wise.
*/
primitive (*) : {a} (Ring a) => a -> a -> a
/**
* Returns the additive inverse of its argument.
* Over structured values, operates element-wise.
* The prefix notation '- x' is syntactic sugar
* for 'negate x'.
*
* Satisfies 'a + negate a = 0'.
* Satisfies 'negate a = ~a + 1' for bitvector values.
*/
primitive negate : {a} (Ring a) => a -> a
// The Integral class -------------------------------------------------
/**
* Value types that correspond to a segment of the
* integers. These types support integer division and
* modulus, indexing into sequences, and enumeration.
*/
primitive type Integral : * -> Prop
/**
* Divide two values, rounding down (toward negative infinity).
* * For type [n], the arguments are treated as unsigned.
* * Division by zero is undefined.
*/
primitive (/) : {a} (Integral a) => a -> a -> a
/**
* Compute the remainder from dividing two values.
* * For type [n], the arguments are treated as unsigned.
* * Remainder of division by zero is undefined.
* * Satisfies 'x % y == x - (x / y) * y'.
*/
primitive (%) : {a} (Integral a) => a -> a -> a
/**
* Converts a value of an integral type to an integer.
*/
primitive toInteger : {a} (Integral a) => a -> Integer
/**
* Compute the exponentiation of a value in a ring.
* * For type [n], the exponent is treated as unsigned.
* * It is an error to raise a value to a negative integer exponent.
* * Satisfies: 'x ^^ 0 == fromInteger 1'
* * Satisfies: 'x ^^ e == x * x ^^ (e-1)' when 'e > 0'.
*/
primitive (^^) : {a, e} (Ring a, Integral e) => a -> e -> a
/**
* An infinite sequence counting up from the given starting value.
* '[x...]' is syntactic sugar for 'infFrom x'.
*/
primitive infFrom : {a} (Integral a) => a -> [inf]a
/**
* An infinite arithmetic sequence starting with the given two values.
* '[x,y...]' is syntactic sugar for 'infFromThen x y'.
*/
primitive infFromThen : {a} (Integral a) => a -> a -> [inf]a
// The Field class -------------------------------------------------
/**
* Value types that correspond to a field; that is,
* a ring also posessing multiplicative inverses for
* non-zero elements.
*
* Floating-point values are only approximately a field,
* but nonetheless inhabit this class.
*/
primitive type Field : * -> Prop
/**
* Reciprocal
*
* Compute the multiplicative inverse of an element of a field.
* The reciprocal of 0 is undefined.
*/
primitive recip : {a} (Field a) => a -> a
/**
* Field division
*
* The division operation in a field.
* Satisfies 'x /. y == x * (recip y)'
*
* Field division by 0 is undefined.
*/
primitive (/.) : {a} (Field a) => a -> a -> a
// The Round class -------------------------------------------------
/** Value types that can be rounded to integer values. */
primitive type Round : * -> Prop
/**
* Ceiling function.
*
* Given 'x', compute the smallest integer 'i'
* such that 'x <= i'.
*/
primitive ceiling : {a} (Round a) => a -> Integer
/**
* Floor function.
*
* Given 'x', compute the largest integer 'i'
* such that 'i <= x'.
*/
primitive floor : {a} (Round a) => a -> Integer
/**
* Truncate the value toward 0.
*
* Given 'x' compute the nearest integer between
* 'x' and 0. For nonnegative 'x', this is floor,
* and for negative 'x' this is ceiling.
*/
primitive trunc : {a} (Round a) => a -> Integer
/**
* Round to the nearest integer, ties away from 0.
*
* Ties are broken away from 0. For nonnegative 'x'
* this is 'floor (x + 0.5)'. For negative 'x' this
* is 'ceiling (x - 0.5)'.
*/
primitive roundAway : {a} (Round a) => a -> Integer
/**
* Round to the nearest integer, ties to even.
*
* Ties are broken to the nearest even integer.
*/
primitive roundToEven : {a} (Round a) => a -> Integer
// The Eq class ----------------------------------------------------
/** Value types that support equality comparisons. */
primitive type Eq : * -> Prop
/**
* Compares any two values of the same type for equality.
*/
primitive (==) : {a} (Eq a) => a -> a -> Bit
/**
* Compares any two values of the same type for inequality.
*/
primitive (!=) : {a} (Eq a) => a -> a -> Bit
/**
* Compare the outputs of two functions for equality.
*/
(===) : {a, b} (Eq b) => (a -> b) -> (a -> b) -> (a -> Bit)
f === g = \ x -> f x == g x
/**
* Compare the outputs of two functions for inequality.
*/
(!==) : {a, b} (Eq b) => (a -> b) -> (a -> b) -> (a -> Bit)
f !== g = \x -> f x != g x
// The Cmp class ---------------------------------------------------
/** Value types that support equality and ordering comparisons. */
primitive type Cmp : * -> Prop
/**
* Less-than. Only works on comparable arguments.
*
* Bitvectors are compared using unsigned arithmetic.
*/
primitive (<) : {a} (Cmp a) => a -> a -> Bit
/**
* Greater-than of two comparable arguments.
*
* Bitvectors are compared using unsigned arithmetic.
*/
primitive (>) : {a} (Cmp a) => a -> a -> Bit
/**
* Less-than or equal of two comparable arguments.
*
* Bitvectors are compared using unsigned arithmetic.
*/
primitive (<=) : {a} (Cmp a) => a -> a -> Bit
/**
* Greater-than or equal of two comparable arguments.
*
* Bitvectors are compared using unsigned arithmetic.
*/
primitive (>=) : {a} (Cmp a) => a -> a -> Bit
/**
* Returns the smaller of two comparable arguments.
* Bitvectors are compared using unsigned arithmetic.
*/
min : {a} (Cmp a) => a -> a -> a
min x y = if x < y then x else y
/**
* Returns the greater of two comparable arguments.
* Bitvectors are compared using unsigned arithmetic.
*/
max : {a} (Cmp a) => a -> a -> a
max x y = if x > y then x else y
/**
* Compute the absolute value of a value from an ordered ring.
* Bitvector values are considered unsigned, so this is
* the identity function on [n].
*/
abs : {a} (Cmp a, Ring a) => a -> a
abs x = if x < fromInteger 0 then negate x else x
// The SignedCmp class ----------------------------------------------
/** Value types that support signed comparisons. */
primitive type SignedCmp : * -> Prop
/**
* 2's complement signed less-than.
*/
primitive (<$) : {a} (SignedCmp a) => a -> a -> Bit
/**
* 2's complement signed greater-than.
*/
(>$) : {a} (SignedCmp a) => a -> a -> Bit
x >$ y = y <$ x
/**
* 2's complement signed less-than-or-equal.
*/
(<=$) : {a} (SignedCmp a) => a -> a -> Bit
x <=$ y = ~(y <$ x)
/**
* 2's complement signed greater-than-or-equal.
*/
(>=$) : {a} (SignedCmp a) => a -> a -> Bit
x >=$ y = ~(x <$ y)
// Bit specific operations ----------------------------------------
/**
* The constant True. Corresponds to the bit value 1.
*/
primitive True : Bit
/**
* The constant False. Corresponds to the bit value 0.
*/
primitive False : Bit
/**
* Short-cutting boolean conjunction function.
* If the first argument is False, the second argument
* is not evaluated.
*/
(/\) : Bit -> Bit -> Bit
x /\ y = if x then y else False
/**
* Short-cutting boolean disjunction function.
* If the first argument is True, the second argument
* is not evaluated.
*/
(\/) : Bit -> Bit -> Bit
x \/ y = if x then True else y
/**
* Short-cutting logical implication.
* If the first argument is False, the second argument is
* not evaluated.
*/
(==>) : Bit -> Bit -> Bit
a ==> b = if a then b else True
// Bitvector specific operations ----------------------------------
/**
* 2's complement signed division. Division rounds toward 0.
* Division by 0 is undefined.
*
* * Satisfies 'x == x %$ y + (x /$ y) * y' for 'y != 0'.
*/
primitive (/$) : {n} (fin n, n >= 1) => [n] -> [n] -> [n]
/**
* 2's complement signed remainder. Division rounds toward 0.
* Division by 0 is undefined. Satisfies the following for 'y != 0'
*
* * 'x %$ y == x - (x /$ y) * y'.
* * 'x >=$ 0 ==> x %$ y >=$ 0'
* * 'x <=$ 0 ==> x %$ y <=$ 0'
*/
primitive (%$) : {n} (fin n, n >= 1) => [n] -> [n] -> [n]
/**
* Unsigned carry. Returns true if the unsigned addition of the given
* bitvector arguments would result in an unsigned overflow.
*/
carry : {n} (fin n) => [n] -> [n] -> Bit
carry x y = (x + y) < x
/**
* Signed carry. Returns true if the 2's complement signed addition of the
* given bitvector arguments would result in a signed overflow.
*/
scarry : {n} (fin n, n >= 1) => [n] -> [n] -> Bit
scarry x y = (sx == sy) && (sx != sz)
where
z = x + y
sx = x@0
sy = y@0
sz = z@0
/**
* Signed borrow. Returns true if the 2's complement signed subtraction of the
* given bitvector arguments would result in a signed overflow.
*/
sborrow : {n} (fin n, n >= 1) => [n] -> [n] -> Bit
sborrow x y = ( x <$ (x-y) ) ^ y@0
/**
* Zero extension of a bitvector.
*/
zext : {m, n} (fin m, m >= n) => [n] -> [m]
zext x = zero # x
/**
* Sign extension of a bitvector.
*/
sext : {m, n} (fin m, m >= n, n >= 1) => [n] -> [m]
sext x = newbits # x
where newbits = if x@0 then ~zero else zero
/**
* 2's complement signed (arithmetic) right shift. The first argument
* is the sequence to shift (considered as a signed value),
* the second argument is the number of positions to shift
* by (considered as an unsigned value).
*/
primitive (>>$) : {n, ix} (fin n, n >= 1, Integral ix) => [n] -> ix -> [n]
/**
* Log base two.
*
* For words, computes the ceiling of log, base 2, of a number.
* We set 'lg2 0 = 0'
*/
primitive lg2 : {n} (fin n) => [n] -> [n]
// Rational specific operations ----------------------------------------------
/**
* Compute the ratio of two integers as a rational.
* Ratio is undefined if the denominator is 0.
*
* 'ratio x y = (fromInteger x /. fromInteger y) : Rational'
*/
primitive ratio : Integer -> Integer -> Rational
// Zn specific operations ----------------------------------------------------
/**
* Converts an integer modulo n to an unbounded integer in the range 0 to n-1.
*/
primitive fromZ : {n} (fin n, n >= 1) => Z n -> Integer
// Sequence operations -------------------------------------------------------
/**
* Concatenates two sequences. On bitvectors, the most-significant bits
* are in the left argument, and the least-significant bits are in the right.
*/
primitive (#) : {front, back, a} (fin front) => [front]a -> [back]a
-> [front + back] a
/**
* Splits a sequence into a pair of sequences.
* 'splitAt z = (x, y)' iff 'x # y = z'.
*/
primitive splitAt : {front, back, a} (fin front) => [front + back]a
-> ([front]a, [back]a)
/**
* Concatenates a list of sequences.
* 'join' is the inverse function to 'split'.
*/
primitive join : {parts, each, a} (fin each) => [parts][each]a
-> [parts * each]a
/**
* Splits a sequence into 'parts' groups with 'each' elements.
* 'split' is the inverse function to 'join'.
*/
primitive split : {parts, each, a} (fin each) => [parts * each]a
-> [parts][each]a
/**
* Reverses the elements in a sequence.
*/
primitive reverse : {n, a} (fin n) => [n]a -> [n]a
/**
* Transposes a matrix.
* Satisfies the property 'transpose m @ i @ j == m @ j @ i'.
*/
primitive transpose : {rows, cols, a} [rows][cols]a -> [cols][rows]a
/**
* Select the first (left-most) 'front' elements of a sequence.
*/
take : {front, back, a} (fin front) => [front + back]a -> [front]a
take (x # _) = x
/**
* Select all the elements after (to the right of) the 'front' elements of a sequence.
*/
drop : {front, back, a} (fin front) => [front + back]a -> [back]a
drop ((_ : [front] _) # y) = y
/**
* Drop the first (left-most) element of a sequence.
*/
tail : {n, a} [1 + n]a -> [n]a
tail xs = drop`{1} xs
/**
* Return the first (left-most) element of a sequence.
*/
head : {n, a} [1 + n]a -> a
head xs = xs @ 0
/**
* Return the right-most element of a sequence.
*/
last : {n, a} (fin n) => [1 + n]a -> a
last xs = xs ! 0
/**
* Same as 'split', but with a different type argument order.
* Take a sequence of elements and break it into 'parts' sequences
* of 'each' elements.
*/
groupBy : {each, parts, a} (fin each) => [parts * each]a -> [parts][each]a
groupBy = split`{parts=parts}
/**
* Left shift. The first argument is the sequence to shift, the second is the
* number of positions to shift by.
*/
primitive (<<) : {n, ix, a} (Integral ix, Zero a) => [n]a -> ix -> [n]a
/**
* Right shift. The first argument is the sequence to shift, the second is the
* number of positions to shift by.
*/
primitive (>>) : {n, ix, a} (Integral ix, Zero a) => [n]a -> ix -> [n]a
/**
* Left rotate. The first argument is the sequence to rotate, the second is the
* number of positions to rotate by.
*/
primitive (<<<) : {n, ix, a} (fin n, Integral ix) => [n]a -> ix -> [n]a
/**
* Right rotate. The first argument is the sequence to rotate, the second is
* the number of positions to rotate by.
*/
primitive (>>>) : {n, ix, a} (fin n, Integral ix) => [n]a -> ix -> [n]a
/**
* Index operator. The first argument is a sequence. The second argument is
* the zero-based index of the element to select from the sequence.
*/
primitive (@) : {n, a, ix} (Integral ix) => [n]a -> ix -> a
/**
* Bulk index operator. The first argument is a sequence. The second argument
* is a sequence of the zero-based indices of the elements to select.
*/
(@@) : {n, k, ix, a} (Integral ix) => [n]a -> [k]ix -> [k]a
xs @@ is = [ xs @ i | i <- is ]
/**
* Reverse index operator. The first argument is a finite sequence. The second
* argument is the zero-based index of the element to select, starting from the
* end of the sequence.
*/
primitive (!) : {n, a, ix} (fin n, Integral ix) => [n]a -> ix -> a
/**
* Bulk reverse index operator. The first argument is a finite sequence. The
* second argument is a sequence of the zero-based indices of the elements to
* select, starting from the end of the sequence.
*/
(!!) : {n, k, ix, a} (fin n, Integral ix) => [n]a -> [k]ix -> [k]a
xs !! is = [ xs ! i | i <- is ]
/**
* Update the given sequence with new value at the given index position.
* The first argument is a sequence. The second argument is the zero-based
* index of the element to update, starting from the front of the sequence.
* The third argument is the new element. The return value is the
* initial sequence updated so that the indicated index has the given value.
*/
primitive update : {n, a, ix} (Integral ix) => [n]a -> ix -> a -> [n]a
/**
* Update the given sequence with new value at the given index position.
* The first argument is a sequence. The second argument is the zero-based
* index of the element to update, starting from the end of the sequence.
* The third argument is the new element. The return value is the
* initial sequence updated so that the indicated index has the given value.
*/
primitive updateEnd : {n, a, ix} (fin n, Integral ix) => [n]a -> ix -> a -> [n]a
/**
* Perform a series of updates to a sequence. The first argument is
* the initial sequence to update. The second argument is a sequence
* of indices, and the third argument is a sequence of values.
* This function applies the 'update' function in sequence with the
* given update pairs.
*/
updates : {n, k, ix, a} (Integral ix, fin k) => [n]a -> [k]ix -> [k]a -> [n]a
updates xs0 idxs vals = xss!0
where
xss = [ xs0 ] #
[ update xs i b
| xs <- xss
| i <- idxs
| b <- vals
]
/**
* Perform a series of updates to a sequence. The first argument is
* the initial sequence to update. The second argument is a sequence
* of indices, and the third argument is a sequence of values.
* This function applies the 'updateEnd' function in sequence with the
* given update pairs.
*/
updatesEnd : {n, k, ix, a} (fin n, Integral ix, fin k) => [n]a -> [k]ix -> [k]a -> [n]a
updatesEnd xs0 idxs vals = xss!0
where
xss = [ xs0 ] #
[ updateEnd xs i b
| xs <- xss
| i <- idxs
| b <- vals
]
/**
* Produce a sequence using a generating function.
* Satisfies 'generate f @ i == f i' for all 'i' between '0' and 'n-1'.
*
* Declarations of the form 'x @ i = e' are syntactic sugar for
* 'x = generate (\i -> e)'.
*/
generate : {n, a} (fin n, n >= 1) => (Integer -> a) -> [n]a
generate f = [ f i | i <- [0 .. n-1] ]
// GF_2^n polynomial computations -------------------------------------------
/**
* Performs multiplication of polynomials over GF(2).
*/
pmult : {u, v} (fin u, fin v) => [1 + u] -> [1 + v] -> [1 + u + v]
pmult x y = last zs
where
zs = [0] # [ (z << 1) ^ (if yi then 0 # x else 0) | yi <- y | z <- zs ]
/**
* Performs division of polynomials over GF(2).
*/
pdiv : {u, v} (fin u, fin v) => [u] -> [v] -> [u]
pdiv x y = [ z ! degree | z <- zs ]
where
degree : [width v]
degree = last (ds : [1 + v]_)
where ds = [0/0] # [if yi then i else d | yi <- reverse y | i <- [0..v] | d <- ds ]
reduce : [v] -> [v]
reduce u = if u ! degree then u ^ y else u
zs : [u][v]
zs = [ tail (reduce z # [xi]) | z <- [0] # zs | xi <- x ]
/**
* Performs modulus of polynomials over GF(2).
*/
pmod : {u, v} (fin u, fin v) => [u] -> [1 + v] -> [v]
pmod x y = if y == 0 then 0/0 else last zs
where
degree : [width v]
degree = last (ds : [2 + v]_)
where ds = [0/0] # [if yi then i else d | yi <- reverse y | i <- [0..v] | d <- ds ]
reduce : [1 + v] -> [1 + v]
reduce u = if u ! degree then u ^ y else u
powers : [inf][1 + v]
powers = [reduce 1] # [ reduce (p << 1) | p <- powers ]
zs = [0] # [ z ^ (if xi then tail p else 0) | xi <- reverse x | p <- powers | z <- zs ]
// Experimental primitives ------------------------------------------------------------
/**
* Parallel map. The given function is applied to each element in the
* given finite seqeuence, and the results are computed in parallel.
*
* This function is experimental.
*/
primitive parmap : {a, b, n} (fin n) => (a -> b) -> [n]a -> [n]b
// Utility operations -----------------------------------------------------------------
/**
* Raise a run-time error with the given message.
* This function can be called at any type.
*/
primitive error : {a, n} (fin n) => String n -> a
/**
* Raise a run-time error with a generic message.
* This function can be called at any type.
*/
undefined : {a} a
undefined = error "undefined"
/**
* Assert that the given condition holds, and raise an error
* with the given message if it does not. If the condition
* holds, return the third argument unchanged.
*/
assert : {a, n} (fin n) => Bit -> String n -> a -> a
assert pred msg x = if pred then x else error msg
/**
* Generates random values from a seed. When called with a function, currently
* generates a function that always returns zero.
*/
primitive random : {a} [256] -> a
/**
* Debugging function for tracing. The first argument is a string,
* which is prepended to the printed value of the second argument.
* This combined string is then printed when the trace function is
* evaluated. The return value is equal to the third argument.
*
* The exact timing and number of times the trace message is printed
* depend on the internal details of the Cryptol evaluation order,
* which are unspecified. Thus, the output produced by this
* operation may be difficult to predict.
*/
primitive trace : {n, a, b} (fin n) => String n -> a -> b -> b
/**
* Debugging function for tracing values. The first argument is a string,
* which is prepended to the printed value of the second argument.
* This combined string is then printed when the trace function is
* evaluated. The return value is equal to the second argument.
*
* The exact timing and number of times the trace message is printed
* depend on the internal details of the Cryptol evaluation order,
* which are unspecified. Thus, the output produced by this
* operation may be difficult to predict.
*/
traceVal : {n, a} (fin n) => String n -> a -> a
traceVal msg x = trace msg x x
/* Functions previously in Cryptol::Extras */
/**
* Conjunction of all bits in a sequence.
*/
and : {n} (fin n) => [n]Bit -> Bit
and xs = ~zero == xs