-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
328 lines (272 loc) · 12.7 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
#############################
# Made by the Re-Search team for Edinburgh's Text Technologies for Data Science Course.
# Main Server backend:
# - Use prod_app.py to run it in production
# - Use app.py to run it in development
############################
# rank papers
from core_algorithms.ir_eval.ranking_paper import ranking_query_BM25 as ranking_query_bm25_paper
from core_algorithms.ir_eval.ranking_paper import ranking_query_tfidf_cosine as ranking_query_tfidf_paper
from core_algorithms.ir_eval.ranking_paper import phrase_search as phrase_search_paper
from core_algorithms.ir_eval.ranking_paper import proximity_search as proximity_search_paper
# rank datasets
from core_algorithms.ir_eval.ranking import ranking_query_tfidf as ranking_query_tfidf_dataset # this will give you an error for python 3.8
from core_algorithms.ir_eval.ranking import phrase_search as phrase_search_dataset
from core_algorithms.ir_eval.ranking import proximity_search as proximity_search_dataset
from core_algorithms.ir_eval.ranking import ranking_query_BM25 as ranking_query_bm25_dataset
# helper infra functions
from core_algorithms.mongoDB_API import MongoDBClient
from core_algorithms.ir_eval.preprocessing import preprocess, author_preprocess
from core_algorithms.adv_query_options import query_spell_check, get_query_expansion
from infra.helpers import curr_day, min_day, deserialize, filter_dates, Formatting
from infra.LRUCache import LRUCache
# stdlib
from datetime import datetime
import heapq
import threading
# dependencies
from flask import Flask, request
from flask_cors import CORS
import pandas as pd
import requests
curr_formatter = Formatting()
app = Flask(__name__)
CORS(app)
print("completed.. your server will be up in less than 5 seconds..")
# Load datasets for inverted index
df = pd.read_csv("core_algorithms/ir_eval/Datasets_dataset.csv", sep='\t')
df.rename(columns={"description": "abstract"}, inplace=True)
client = MongoDBClient("34.142.18.57")
_preprocessing_cache = LRUCache(1000)
_results_cache = LRUCache(200)
def call_top_n(N, parameters):
N = int(N)
results = {"Results":[]}
server_fail = False
if parameters["search_type"] == "AUTHOR":
if parameters["datasets"]:
print("no Author search for datasets")
server_fail = True
else:
results = get_author_papers_results(query=parameters['query'],
start_date=parameters["start_date"], end_date=parameters["end_date"],
top_n=N)
elif parameters["algorithm"] == "APPROX_NN":
c_response = None
if parameters["datasets"]:
c_response = requests.get('http://10.138.0.7:5002/datasets/' + parameters['query'] + "/" + str(N) + "/" + parameters["start_date_str"] + "/" + parameters["end_date_str"])
else:
c_response = requests.get('http://10.138.0.7:5002/papers/' + parameters['query'] + "/" + str(N) + "/" + parameters["start_date_str"] + "/" + parameters["end_date_str"])
if c_response and c_response.status_code == 200:
results = c_response.json()
else:
print(f"ERROR WITH CODE: {c_response.status_code}")
server_fail = True
elif parameters["datasets"]:
results = get_datasets_results(query=parameters['query'],
input_type = parameters["search_type"],
ranking = parameters["algorithm"], top_n=N)
else:
try:
results = get_papers_results(query=parameters['query'],
input_type = parameters["search_type"],
ranking = parameters["algorithm"],
start_date=parameters["start_date"],
end_date=parameters["end_date"], top_n=N)
except:
print("something went wrong.")
server_fail = True
results = {"Results":[]}
return results, server_fail
def get_full_result(parameters, id):
result, server_fail = call_top_n(1000, parameters)
if not server_fail: _results_cache.put(id, result)
return result
@app.route("/favicon.ico")
def favicon():
return ""
@app.route("/<search_query>", methods = ['POST', 'GET'])
def search_state_machine(search_query):
results = {"Results":[{}]}
parameters = deserialize(request.args['q'])
id = request.args['q'].rpartition("/pn=")[0]
# # parameters JSON Format for reference
# {
# query: search_query : DOME
# from_date: DD-MM-YYYY (last) :
# to_date: DD-MM-YYYY :
# Authors: [str1, str2] : DONE
# search_type: str (default, proximity, phrase, author) : DONE
# algorithm: str (approx_nn, bm25, tf-idf) : DONE
# datasets: bool
# page_num: int
# }
pn = parameters["page_num"]
num_of_results = 10
if parameters["page_num"] > 1:
thread = _results_cache.get(id+'_thread')
if not thread is None:
thread.join()
content = _results_cache.get(id)
if content is None:
content = get_full_result(parameters, id)
results = {"Results" : content['Results'][ (pn-1)*num_of_results : pn*num_of_results ]}
else:
content = _results_cache.get(id)
if not content is None:
return {"Results" : content['Results'][ (pn-1)*num_of_results : pn*num_of_results ]}
results, server_failure = call_top_n(num_of_results, parameters)
thread = threading.Thread(target=get_full_result, args=(parameters, id))
_results_cache.put(id+'_thread', thread)
thread.start()
return results
@app.route("/")
def direct_access_to_backend():
return "Change PORT to 3000 to access the React frontend!"
######################### Search Functions ########################
def get_datasets_results(query: str, top_n: int=10, spell_check=False, qe=False,
input_type :str = "DEFAULT", ranking: str = "TF_IDF",) -> dict:
if spell_check:
query = ' '.join(query_spell_check(query))
if qe:
query = query + ' ' + ' '.join(get_query_expansion(query))
query_params = _preprocess_query(query,True, True) # stemming, removing stopwords
if input_type == "DEFAULT":
if ranking == "TF_IDF":
scores = ranking_query_tfidf_dataset(query_params)
else:
scores = ranking_query_bm25_dataset(query_params)
outputs = [i[0] for i in scores[:top_n]]
elif input_type == "PHRASE":
outputs = phrase_search_dataset(query_params) # return: list of ids of paper
elif input_type == "PROXIMITY":
outputs = proximity_search_dataset(query_params, proximity=10) # return: list of ids of paper
output_dict = {"Results":[]}
columns = ['title','subtitle', 'abstract', 'ownerUser', 'dataset_slug', 'keyword']
for result in outputs[:top_n]:
output = df.iloc[result][columns].to_dict()
for key, value in output.items():
output[key] = str(value)
output["date"] = ""
output["authors"] = output["ownerUser"]
output["abstract"] = output["subtitle"] + " " + output["abstract"]
if not (output["ownerUser"].startswith("http") or output["ownerUser"].startswith("https")):
output["url"] = "https://kaggle.com/" + output["ownerUser"] + "/" + output['dataset_slug']
else:
output["url"] = output["ownerUser"]
output_dict["Results"].append(output)
return output_dict
def get_papers_results(query: str, top_n: int=10, spell_check=False, qe=False,
input_type :str = "DEFAULT", ranking: str = "TF_IDF",
start_date:datetime = min_day, end_date:datetime = curr_day) -> dict:
if spell_check:
query = ' '.join(query_spell_check(query))
if qe:
query = query + ' ' + ' '.join(get_query_expansion(query))
query_params = _preprocess_query(query, True, True) # stemming, removing stopwords
if input_type == "DEFAULT":
if ranking == "TF_IDF":
scores = ranking_query_tfidf_paper(query_params, client)
else:
scores = ranking_query_bm25_paper(query_params, client)
outputs = [i[0] for i in scores]
elif input_type == "PHRASE":
outputs = phrase_search_paper(query_params, client) # return: list of ids of paper
elif input_type == "PROXIMITY":
outputs = proximity_search_paper(query_params, client, proximity=10)
output_dict = {}
temp_result = list(client.order_preserved_get_data(id_list= outputs[:top_n],
start_date=start_date, end_date=end_date,
fields=['title', 'abstract','authors', 'url', 'date'],
limit=top_n
)
)
for result in temp_result:
result["date"] = result["date"].strftime("%d/%m/%Y")
output_dict["Results"] = temp_result
return output_dict
def get_author_papers_results(query: str, top_n: int=100, preprocess: bool=True, start_date:datetime = min_day, end_date:datetime = curr_day) -> dict:
'''
Sorting order in cases of equalities:
1 - Descending order of number of authors matching query (if more than 1 authors)
2 - Ascending order of position of author in the author list (sum of positions if more than 1 authors matching)
3 - Ascending order of term appearance in the query
'''
date_changed = start_date != min_day or end_date != curr_day
if preprocess:
query = author_preprocess(query)
query_params = {'query': query}
dict_occur = {}
for author in query:
temp_list = list(client.get_doc_from_index(term=author, index_table='a_index'))
# Sort based on order of author
temp_list = sorted(temp_list, key=lambda d: d['pos'][0])
for i in temp_list:
id = i['id']
if id not in dict_occur: dict_occur[id] = [0, 0]
dict_occur[id][0] += 1
dict_occur[id][1] += i['pos'][0]
dict_occur = dict(heapq.nsmallest(top_n if not date_changed else len(dict_occur), dict_occur.items(), key=lambda x: (-x[1][0],x[1][1])))
outputs = list(dict_occur.keys())
output_dict = {}
temp_result = list(client.order_preserved_get_data(id_list= outputs[:top_n],
start_date=start_date, end_date=end_date,
fields=['title', 'abstract','authors', 'url', 'date'],
limit=top_n
)
)
for result in temp_result:
result["date"] = result["date"].strftime("%d/%m/%Y")
output_dict["Results"] = temp_result
return output_dict
def authors_extensions(query: str, top_n: int=10, docs_searched: int=10, author_search_result: dict={'Results':[]}) -> dict:
"""
Call using author_search_result (results of regular author search) to avoid recalculating
"""
authors = set(author_preprocess(query))
coauthors = [author_preprocess(i['authors'])[:10] for i in author_search_result["Results"][:docs_searched]]
merged_coauthors = [item for sublist in coauthors for item in sublist if item not in authors]
merged_coauthors = list(dict.fromkeys(merged_coauthors))
results = get_author_papers_results(merged_coauthors, top_n, preprocess=False)
return results
@app.route("/SC/<query>", methods=['GET', 'POST'])
def query_spellcheck(query: str):
"""
Recommends synonyms to users
"""
spellchecked = " ".join(query_spell_check(query))
if spellchecked == query:
return {"SCResults": ["Spell Checker: Found 0 errors", ""]}
else:
spellchecked = "Spell Checker - Did you mean? " + spellchecked
return {"SCResults": [spellchecked, ""]}
@app.route("/QE/<query>", methods=['GET', 'POST'])
def query_expansion(query: str):
"""
Recommends synonyms to users
"""
expanded_queries = list(get_query_expansion(query))
if not expanded_queries:
return {"QEResults": ["Query Expansion: Found 0 synonyms", ""]}
else:
expanded_queries = "Expanded Queries: " + ", ".join(expanded_queries)
return {"QEResults": [expanded_queries, ""]}
def _preprocess_query(query: str, stemming=True, remove_stopwords=True) -> dict:
"""
Input: query (str)
Output: dict
Helper function to preprocess queries efficiently with local cache.
"""
cached_data = _preprocessing_cache.get(query)
query_params = None
if cached_data is not None:
query_params = cached_data
else:
query_params = preprocess(query, stemming, remove_stopwords)
query_params = {'query': query_params}
_preprocessing_cache.put(query, query_params)
return query_params
#if __name__ == "__main__":
# serve(app, host='0.0.0.0', port=5000)
# app = create_app()
# app.run()