-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_load.py
73 lines (57 loc) · 2.28 KB
/
data_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import numpy as np
import tensorflow as tf
import nibabel as nib
from tensorflow.keras.utils import to_categorical
def load_img(img_files):
''' Load one image and its target form file
'''
N = len(img_files)
# target
y = nib.load(img_files[N-1]).get_fdata(dtype='float32')
y = y[4:180,17:209,2:162]
X_norm = np.empty((182, 218, 182, 1))
for channel in range(N-1):
X = nib.load(img_files[channel]).get_fdata(dtype='float32')
X_norm[:,:,:,channel] = X
X_norm = X_norm[4:180,17:209,2:162,:]
return X_norm, y
class DataGenerator(tf.keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, list_IDs, batch_size=4, dim=(176,192,160), n_channels=1, n_classes=4, shuffle=True):
'Initialization'
self.list_IDs = list_IDs
self.batch_size = batch_size
self.dim = dim
self.n_channels = n_channels
self.n_classes = n_classes
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.ceil(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
list_IDs_temp = [self.list_IDs[k] for k in indexes]
# Generate data
X, y = self.__data_generation(list_IDs_temp)
if index == self.__len__()-1:
self.on_epoch_end()
return X, y
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, list_IDs_temp):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.empty((self.batch_size, *self.dim, self.n_channels))
y = np.empty((self.batch_size, *self.dim))
# Generate data
for i, IDs in enumerate(list_IDs_temp):
# Store sample
X[i], y[i] = load_img(IDs)
return X.astype('float32'), to_categorical(y, self.n_classes)