-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpolicy.py
190 lines (154 loc) · 8.38 KB
/
policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
import torch.nn.functional as F
import numpy as np
from typing import Union, List, Dict
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from utils.constants import NEGATIVE_INF
from utils.utils import logits_to_entropy, mask_pad
class Policy:
def __init__(self, model_name, temperature, device, reward_cond=False, tree_tokens=None):
self.model = GPT2LMHeadModel.from_pretrained(model_name)
self.device = device
self.tokenizer = GPT2Tokenizer.from_pretrained(model_name, pad_token="<|endoftext|>")
self.model.config.pad_token_id = self.tokenizer.pad_token_id
if reward_cond:
self.tokenizer.add_tokens(tree_tokens, special_tokens=True)
weights = self.model.get_input_embeddings().weight.detach().numpy()
mean_weights, std_weights = np.mean(weights, axis=0), np.std(weights, axis=0)
new_inits = np.vstack([np.random.normal(loc=mean_weights, scale=std_weights) for _ in tree_tokens])
self.model.resize_token_embeddings(len(self.tokenizer))
with torch.no_grad():
new_inits = torch.tensor(new_inits)
self.model.get_input_embeddings().weight[-len(tree_tokens):, :] = new_inits
self.model = self.model.to(self.device)
self.model.parallelize()
self.temperature = temperature
def sample(self,
prompts: Union[str, List[str]] = None,
input_ids: torch.Tensor = None,
attention_mask: torch.Tensor = None,
max_len: int = 20,
min_len: int = 3,
sample: bool = True,
top_k: int = None,
top_p: float = None,
temperature: float = None) -> Dict[str, Union[torch.Tensor, List[str]]]:
if temperature is None:
temperature = self.temperature
if prompts is not None:
assert input_ids is None and attention_mask is None, 'repeated input'
if isinstance(prompts, str):
prompts = [prompts]
encodings_dict = self.tokenizer(prompts, return_tensors="pt", padding=True)
input_ids = encodings_dict['input_ids'].to(self.device)
attention_mask = encodings_dict['attention_mask'].to(self.device)
else:
input_ids = input_ids.to(self.device)
attention_mask = attention_mask.to(self.device)
model_kwargs = {'attention_mask': attention_mask}
batch_size, input_seq_len = input_ids.shape
logits_warper = self.model._get_logits_warper(
top_k=top_k, top_p=top_p, temperature=temperature, num_beams=1
)
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=self.device)
output_logprob = torch.zeros([batch_size, 0], dtype=torch.float, device=self.device)
output_mask = torch.ones([batch_size, 0], dtype=torch.long, device=self.device)
self.model.eval()
with torch.no_grad():
for step in range(max_len):
# prepare model inputs
model_inputs = self.model.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = self.model(
**model_inputs,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
)
# in the first decoding step, we want to use the 'real' last position for each sentence
if step == 0:
last_non_masked_idx = torch.sum(attention_mask, dim=1) - 1
next_token_logits = outputs.logits[range(batch_size), last_non_masked_idx, :]
else:
next_token_logits = outputs.logits[:, -1, :]
if step < min_len:
next_token_logits[:, self.model.config.eos_token_id] = float('-inf')
log_prob = F.log_softmax(next_token_logits, dim=-1)
if sample:
# Temperature (higher temperature => more likely to sample low probability tokens)
next_token_scores = logits_warper(input_ids, next_token_logits)
probs = F.softmax(next_token_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
# Greedy decoding
next_tokens = torch.argmax(next_token_logits, dim=-1)
# finished sentences should have their next token be a padding token
next_tokens = next_tokens * unfinished_sequences + self.tokenizer.pad_token_id * (1 - unfinished_sequences)
# update output mask
output_mask = torch.cat([output_mask, unfinished_sequences[:, None]], dim=-1)
# update output log probability
token_logprob = torch.gather(log_prob, 1, next_tokens[:, None]).squeeze(1)
token_logprob = token_logprob * unfinished_sequences + NEGATIVE_INF * (1 - unfinished_sequences)
output_logprob = torch.cat([output_logprob, token_logprob[:, None]], dim=-1)
# update generated ids, model inputs for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
model_kwargs = self.model._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.model.config.is_encoder_decoder
)
# if eos_token was found in one sentence, set sentence to finished
unfinished_sequences = unfinished_sequences.mul((next_tokens != self.tokenizer.eos_token_id).long())
if unfinished_sequences.max() == 0:
break
response_ids = input_ids[:, input_seq_len:]
response_text = [self.tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
for output in response_ids]
prompt_ids = input_ids[:, :input_seq_len]
if prompts is None:
prompts = [self.tokenizer.decode(query, skip_special_tokens=True, clean_up_tokenization_spaces=True)
for query in prompt_ids]
return {
'query/input_ids': prompt_ids,
'query/text': prompts,
'query/mask': attention_mask,
'response/input_ids': response_ids,
'response/text': response_text,
'response/mask': output_mask,
'response/log_prob': output_logprob,
}
def forward_pass(self,
query_input_ids: torch.Tensor,
query_mask: torch.Tensor,
response_input_ids: torch.Tensor,
response_mask: torch.Tensor):
query_input_ids = query_input_ids.to(self.device)
query_mask = query_mask.to(self.device)
response_input_ids = response_input_ids.to(self.device)
response_mask = response_mask.to(self.device)
batch_size, query_seq_len = query_input_ids.shape
input_ids = torch.cat([query_input_ids, response_input_ids], dim=-1)
model_kwargs = {'attention_mask': torch.cat([query_mask, response_mask], dim=-1)}
model_inputs = self.model.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = self.model(
**model_inputs,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
)
# get the first logit
query_logits = outputs.logits[:, :query_seq_len, :]
last_non_masked_idx = torch.sum(query_mask, dim=1) - 1
first_logits = query_logits[range(batch_size), last_non_masked_idx, :]
# get the second to last logit
response_logits = outputs.logits[:, query_seq_len:-1, :]
logits = torch.cat([first_logits[:, None], response_logits], dim=1)
log_prob = F.log_softmax(logits, dim=-1)
output_logprob = torch.gather(log_prob, 2, response_input_ids[:, :, None]).squeeze(2)
output_entropy = logits_to_entropy(logits)
lm_loss = -1. * output_logprob
return {
'response/log_prob': mask_pad(output_logprob, response_mask),
'response/lm_loss': mask_pad(lm_loss, response_mask),
'response/entropy': mask_pad(output_entropy, response_mask),
'response/logits': logits,
}