-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_vae.py
76 lines (57 loc) · 2.69 KB
/
train_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import torch
from tqdm import tqdm
from create_dataset import create_dir
from training_pipeline import save_checkpoint
def train_vae(model, train_loader, val_loader, device, optimizer: str = 'Adam',
start_epoch=0, num_epochs=100, learning_rate=1e-3,
checkpoint_name='vae_checkpoint', best_metric_checkpoint_name='best_vae_model'):
optimizers = {
'Adam': torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-5),
'SGD': torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
}
# Initialize optimizer
optimizer_label = optimizer
optimizer = optimizers[optimizer]
train_losses = []
val_losses = []
# Track the best validation loss
best_loss = float('inf')
for epoch in range(start_epoch, num_epochs):
model.train()
train_loss = 0.0
for inputs, _ in tqdm(train_loader, desc=f"Training Epoch {epoch+1}/{num_epochs}"):
inputs = inputs.to(device)
# Forward pass
outputs, mu, logvar = model(inputs)
loss = model.loss_function(outputs, inputs, mu, logvar)
# Backward pass
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
train_loss /= len(train_loader.dataset)
train_losses.append(train_loss)
# Validation phase
model.eval()
val_loss = 0.0
with torch.no_grad():
for inputs, _ in tqdm(val_loader, desc=f"Validation Epoch {epoch+1}/{num_epochs}"):
inputs = inputs.to(device)
outputs, mu, logvar = model(inputs)
loss = model.loss_function(outputs, inputs, mu, logvar)
val_loss += loss.item() * inputs.size(0)
val_loss /= len(val_loader.dataset)
val_losses.append(val_loss)
print(f"Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}")
models_dir_path = create_dir(f'./model_vae_history_{optimizer_label}')
checkpoint_path = os.path.join(models_dir_path, checkpoint_name)
best_metric_checkpoint_path = os.path.join(models_dir_path, best_metric_checkpoint_name)
# Save regular checkpoint
save_checkpoint(epoch+1, model, optimizer, val_loss, optimizer_label, f'{checkpoint_path}.pt')
# Save the best model based on validation loss
if val_loss < best_loss:
best_loss = val_loss
print(f"Best VAE model saved at epoch {epoch+1}")
save_checkpoint(epoch+1, model, optimizer, val_loss, optimizer_label, f'{best_metric_checkpoint_path}.pt')
return train_losses, val_losses