-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathai_lead_generation_agent.py
209 lines (173 loc) · 9.54 KB
/
ai_lead_generation_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import streamlit as st
import requests
from phi.agent import Agent
from phi.tools.firecrawl import FirecrawlTools
from phi.model.openai import OpenAIChat
from firecrawl import FirecrawlApp
from pydantic import BaseModel, Field
from typing import List
from composio_phidata import Action, ComposioToolSet
import json
class QuoraUserInteractionSchema(BaseModel):
username: str = Field(description="The username of the user who posted the question or answer")
bio: str = Field(description="The bio or description of the user")
post_type: str = Field(description="The type of post, either 'question' or 'answer'")
timestamp: str = Field(description="When the question or answer was posted")
upvotes: int = Field(default=0, description="Number of upvotes received")
links: List[str] = Field(default_factory=list, description="Any links included in the post")
class QuoraPageSchema(BaseModel):
interactions: List[QuoraUserInteractionSchema] = Field(description="List of all user interactions (questions and answers) on the page")
def search_for_urls(company_description: str, firecrawl_api_key: str, num_links: int) -> List[str]:
url = "https://api.firecrawl.dev/v1/search"
headers = {
"Authorization": f"Bearer {firecrawl_api_key}",
"Content-Type": "application/json"
}
query1 = f"quora websites where people are looking for {company_description} services"
payload = {
"query": query1,
"limit": num_links,
"lang": "en",
"location": "United States",
"timeout": 60000,
}
response = requests.post(url, json=payload, headers=headers)
if response.status_code == 200:
data = response.json()
if data.get("success"):
results = data.get("data", [])
return [result["url"] for result in results]
return []
def extract_user_info_from_urls(urls: List[str], firecrawl_api_key: str) -> List[dict]:
user_info_list = []
firecrawl_app = FirecrawlApp(api_key=firecrawl_api_key)
try:
for url in urls:
response = firecrawl_app.extract(
[url],
{
'prompt': 'Extract all user information including username, bio, post type (question/answer), timestamp, upvotes, and any links from Quora posts. Focus on identifying potential leads who are asking questions or providing answers related to the topic.',
'schema': QuoraPageSchema.model_json_schema(),
}
)
if response.get('success') and response.get('status') == 'completed':
interactions = response.get('data', {}).get('interactions', [])
if interactions:
user_info_list.append({
"website_url": url,
"user_info": interactions
})
except Exception:
pass
return user_info_list
def format_user_info_to_flattened_json(user_info_list: List[dict]) -> List[dict]:
flattened_data = []
for info in user_info_list:
website_url = info["website_url"]
user_info = info["user_info"]
for interaction in user_info:
flattened_interaction = {
"Website URL": website_url,
"Username": interaction.get("username", ""),
"Bio": interaction.get("bio", ""),
"Post Type": interaction.get("post_type", ""),
"Timestamp": interaction.get("timestamp", ""),
"Upvotes": interaction.get("upvotes", 0),
"Links": ", ".join(interaction.get("links", [])),
}
flattened_data.append(flattened_interaction)
return flattened_data
def create_google_sheets_agent(composio_api_key: str, openai_api_key: str) -> Agent:
composio_toolset = ComposioToolSet(api_key=composio_api_key)
google_sheets_tool = composio_toolset.get_tools(actions=[Action.GOOGLESHEETS_SHEET_FROM_JSON])[0]
google_sheets_agent = Agent(
model=OpenAIChat(id="gpt-4o-mini", api_key=openai_api_key),
tools=[google_sheets_tool],
show_tool_calls=True,
system_prompt="You are an expert at creating and updating Google Sheets. You will be given user information in JSON format, and you need to write it into a new Google Sheet.",
markdown=True
)
return google_sheets_agent
def write_to_google_sheets(flattened_data: List[dict], composio_api_key: str, openai_api_key: str) -> str:
google_sheets_agent = create_google_sheets_agent(composio_api_key, openai_api_key)
try:
message = (
"Create a new Google Sheet with this data. "
"The sheet should have these columns: Website URL, Username, Bio, Post Type, Timestamp, Upvotes, and Links in the same order as mentioned. "
"Here's the data in JSON format:\n\n"
f"{json.dumps(flattened_data, indent=2)}"
)
create_sheet_response = google_sheets_agent.run(message)
if "https://docs.google.com/spreadsheets/d/" in create_sheet_response.content:
google_sheets_link = create_sheet_response.content.split("https://docs.google.com/spreadsheets/d/")[1].split(" ")[0]
return f"https://docs.google.com/spreadsheets/d/{google_sheets_link}"
except Exception:
pass
return None
def create_prompt_transformation_agent(openai_api_key: str) -> Agent:
return Agent(
model=OpenAIChat(id="gpt-4o-mini", api_key=openai_api_key),
system_prompt="""You are an expert at transforming detailed user queries into concise company descriptions.
Your task is to extract the core business/product focus in 3-4 words.
Examples:
Input: "Generate leads looking for AI-powered customer support chatbots for e-commerce stores."
Output: "AI customer support chatbots for e commerce"
Input: "Find people interested in voice cloning technology for creating audiobooks and podcasts"
Output: "voice cloning technology"
Input: "Looking for users who need automated video editing software with AI capabilities"
Output: "AI video editing software"
Input: "Need to find businesses interested in implementing machine learning solutions for fraud detection"
Output: "ML fraud detection"
Always focus on the core product/service and keep it concise but clear.""",
markdown=True
)
def main():
st.title("🎯 AI Lead Generation Agent")
st.info("This firecrawl powered agent helps you generate leads from Quora by searching for relevant posts and extracting user information.")
with st.sidebar:
st.header("API Keys")
firecrawl_api_key = st.text_input("Firecrawl API Key", type="password")
st.caption(" Get your Firecrawl API key from [Firecrawl's website](https://www.firecrawl.dev/app/api-keys)")
openai_api_key = st.text_input("OpenAI API Key", type="password")
st.caption(" Get your OpenAI API key from [OpenAI's website](https://platform.openai.com/api-keys)")
composio_api_key = st.text_input("Composio API Key", type="password")
st.caption(" Get your Composio API key from [Composio's website](https://composio.ai)")
num_links = st.number_input("Number of links to search", min_value=1, max_value=10, value=3)
if st.button("Reset"):
st.session_state.clear()
st.experimental_rerun()
user_query = st.text_area(
"Describe what kind of leads you're looking for:",
placeholder="e.g., Looking for users who need automated video editing software with AI capabilities",
help="Be specific about the product/service and target audience. The AI will convert this into a focused search query."
)
if st.button("Generate Leads"):
if not all([firecrawl_api_key, openai_api_key, composio_api_key, user_query]):
st.error("Please fill in all the API keys and describe what leads you're looking for.")
else:
with st.spinner("Processing your query..."):
transform_agent = create_prompt_transformation_agent(openai_api_key)
company_description = transform_agent.run(f"Transform this query into a concise 3-4 word company description: {user_query}")
st.write("🎯 Searching for:", company_description.content)
with st.spinner("Searching for relevant URLs..."):
urls = search_for_urls(company_description.content, firecrawl_api_key, num_links)
if urls:
st.subheader("Quora Links Used:")
for url in urls:
st.write(url)
with st.spinner("Extracting user info from URLs..."):
user_info_list = extract_user_info_from_urls(urls, firecrawl_api_key)
with st.spinner("Formatting user info..."):
flattened_data = format_user_info_to_flattened_json(user_info_list)
with st.spinner("Writing to Google Sheets..."):
google_sheets_link = write_to_google_sheets(flattened_data, composio_api_key, openai_api_key)
if google_sheets_link:
st.success("Lead generation and data writing to Google Sheets completed successfully!")
st.subheader("Google Sheets Link:")
st.markdown(f"[View Google Sheet]({google_sheets_link})")
else:
st.error("Failed to retrieve the Google Sheets link.")
else:
st.warning("No relevant URLs found.")
if __name__ == "__main__":
main()