-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathai_data_visualisation_agent.py
178 lines (149 loc) · 7.59 KB
/
ai_data_visualisation_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import json
import re
import sys
import io
import contextlib
import warnings
from typing import Optional, List, Any, Tuple
from PIL import Image
import streamlit as st
import pandas as pd
import base64
from io import BytesIO
from together import Together
from e2b_code_interpreter import Sandbox
warnings.filterwarnings("ignore", category=UserWarning, module="pydantic")
pattern = re.compile(r"```python\n(.*?)\n```", re.DOTALL)
def code_interpret(e2b_code_interpreter: Sandbox, code: str) -> Optional[List[Any]]:
with st.spinner('Executing code in E2B sandbox...'):
stdout_capture = io.StringIO()
stderr_capture = io.StringIO()
with contextlib.redirect_stdout(stdout_capture), contextlib.redirect_stderr(stderr_capture):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
exec = e2b_code_interpreter.run_code(code)
if stderr_capture.getvalue():
print("[Code Interpreter Warnings/Errors]", file=sys.stderr)
print(stderr_capture.getvalue(), file=sys.stderr)
if stdout_capture.getvalue():
print("[Code Interpreter Output]", file=sys.stdout)
print(stdout_capture.getvalue(), file=sys.stdout)
if exec.error:
print(f"[Code Interpreter ERROR] {exec.error}", file=sys.stderr)
return None
return exec.results
def match_code_blocks(llm_response: str) -> str:
match = pattern.search(llm_response)
if match:
code = match.group(1)
return code
return ""
def chat_with_llm(e2b_code_interpreter: Sandbox, user_message: str, dataset_path: str) -> Tuple[Optional[List[Any]], str]:
# Update system prompt to include dataset path information
system_prompt = f"""You're a Python data scientist and data visualization expert. You are given a dataset at path '{dataset_path}' and also the user's query.
You need to analyze the dataset and answer the user's query with a response and you run Python code to solve them.
IMPORTANT: Always use the dataset path variable '{dataset_path}' in your code when reading the CSV file."""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_message},
]
with st.spinner('Getting response from Together AI LLM model...'):
client = Together(api_key=st.session_state.together_api_key)
response = client.chat.completions.create(
model=st.session_state.model_name,
messages=messages,
)
response_message = response.choices[0].message
python_code = match_code_blocks(response_message.content)
if python_code:
code_interpreter_results = code_interpret(e2b_code_interpreter, python_code)
return code_interpreter_results, response_message.content
else:
st.warning(f"Failed to match any Python code in model's response")
return None, response_message.content
def upload_dataset(code_interpreter: Sandbox, uploaded_file) -> str:
dataset_path = f"./{uploaded_file.name}"
try:
code_interpreter.files.write(dataset_path, uploaded_file)
return dataset_path
except Exception as error:
st.error(f"Error during file upload: {error}")
raise error
def main():
"""Main Streamlit application."""
st.title("📊 AI Data Visualization Agent")
st.write("Upload your dataset and ask questions about it!")
# Initialize session state variables
if 'together_api_key' not in st.session_state:
st.session_state.together_api_key = ''
if 'e2b_api_key' not in st.session_state:
st.session_state.e2b_api_key = ''
if 'model_name' not in st.session_state:
st.session_state.model_name = ''
with st.sidebar:
st.header("API Keys and Model Configuration")
st.session_state.together_api_key = st.sidebar.text_input("Together AI API Key", type="password")
st.sidebar.info("💡 Everyone gets a free $1 credit by Together AI - AI Acceleration Cloud platform")
st.sidebar.markdown("[Get Together AI API Key](https://api.together.ai/signin)")
st.session_state.e2b_api_key = st.sidebar.text_input("Enter E2B API Key", type="password")
st.sidebar.markdown("[Get E2B API Key](https://e2b.dev/docs/legacy/getting-started/api-key)")
# Add model selection dropdown
model_options = {
"Meta-Llama 3.1 405B": "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
"DeepSeek V3": "deepseek-ai/DeepSeek-V3",
"Qwen 2.5 7B": "Qwen/Qwen2.5-7B-Instruct-Turbo",
"Meta-Llama 3.3 70B": "meta-llama/Llama-3.3-70B-Instruct-Turbo"
}
st.session_state.model_name = st.selectbox(
"Select Model",
options=list(model_options.keys()),
index=0 # Default to first option
)
st.session_state.model_name = model_options[st.session_state.model_name]
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
if uploaded_file is not None:
# Display dataset with toggle
df = pd.read_csv(uploaded_file)
st.write("Dataset:")
show_full = st.checkbox("Show full dataset")
if show_full:
st.dataframe(df)
else:
st.write("Preview (first 5 rows):")
st.dataframe(df.head())
# Query input
query = st.text_area("What would you like to know about your data?",
"Can you compare the average cost for two people between different categories?")
if st.button("Analyze"):
if not st.session_state.together_api_key or not st.session_state.e2b_api_key:
st.error("Please enter both API keys in the sidebar.")
else:
with Sandbox(api_key=st.session_state.e2b_api_key) as code_interpreter:
# Upload the dataset
dataset_path = upload_dataset(code_interpreter, uploaded_file)
# Pass dataset_path to chat_with_llm
code_results, llm_response = chat_with_llm(code_interpreter, query, dataset_path)
# Display LLM's text response
st.write("AI Response:")
st.write(llm_response)
# Display results/visualizations
if code_results:
for result in code_results:
if hasattr(result, 'png') and result.png: # Check if PNG data is available
# Decode the base64-encoded PNG data
png_data = base64.b64decode(result.png)
# Convert PNG data to an image and display it
image = Image.open(BytesIO(png_data))
st.image(image, caption="Generated Visualization", use_container_width=False)
elif hasattr(result, 'figure'): # For matplotlib figures
fig = result.figure # Extract the matplotlib figure
st.pyplot(fig) # Display using st.pyplot
elif hasattr(result, 'show'): # For plotly figures
st.plotly_chart(result)
elif isinstance(result, (pd.DataFrame, pd.Series)):
st.dataframe(result)
else:
st.write(result)
if __name__ == "__main__":
main()