Skip to content

Latest commit

 

History

History
22 lines (21 loc) · 1.18 KB

readme.md

File metadata and controls

22 lines (21 loc) · 1.18 KB

Installation

  1. Make sure you have Nvidia driver and Cuda>=11.7 installed.
  2. pip install -r requirements.txt
  3. python download_models.py
  4. torch-model-archiver --model-name stable-diffusion --version 1.0 --handler handler.py --extra-files "diffusion_model.zip, promptist.zip"
  5. mkdir model_store && mv stable-diffusion.mar model_store/stable-diffusion.mar
  6. Install Java: sudo apt-get install -y openjdk-17-jdk

Startup

  • To start: torchserve --start --ts-config config.properties --models all --model-store model_store
  • To stop: torchserve --stop
  • Working example: query.py

Request fields:

  • "prompt": a text for generation.
  • "num_iterations": number of iterations to perform (tradeoff between speed and quality)
  • "guidance scale": a classifier-free guidance scale (tradeoff between diversity and quality)
  • "negative prompt": a description of what should not be present on an image.
  • "eta": eta for DDIM sampling. 0 - faster. 1 - original implementation via Langevin dynamics. Note: larger eta implies more iterations.
  • "num_images_per_prompt": number of images to generate.
  • "modify_prompt": use Promptist prompt modifier (which probably will result in better image quality).