-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretrain.py
700 lines (620 loc) · 30 KB
/
retrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
# modify v2
"""Train and val."""
import logging
import os
import time
import torch
import subprocess
from utils.config import FLAGS, _ENV_EXPAND
from utils.common import get_params_by_name
from utils.common import set_random_seed
from utils.common import create_exp_dir
from utils.common import setup_logging
from utils.common import save_status
from utils.common import get_device
from utils.common import extract_item
from utils.common import get_data_queue_size
from utils.common import bn_calibration
from utils import dataflow
from utils import optim
from utils import distributed as udist
from utils import prune
from mmseg import seg_dataflow
from mmseg.loss import CrossEntropyLoss, JointsMSELoss, accuracy_keypoint
import models.mobilenet_base as mb
import common as mc
from mmseg.validation import SegVal, keypoint_val
from pruners import *
from prune_utils import load_pruner, masked_parameters, prune_loop
def shrink_model(model_wrapper,
ema,
optimizer,
prune_info,
threshold=1e-3,
ema_only=False):
r"""Dynamic network shrinkage to discard dead atomic blocks.
Args:
model_wrapper: model to be shrinked.
ema: An instance of `ExponentialMovingAverage`, could be None.
optimizer: Global optimizer.
prune_info: An instance of `PruneInfo`, could be None.
threshold: A small enough constant.
ema_only: If `True`, regard an atomic block as dead only when
`$$\hat{alpha} \le threshold$$`. Otherwise use both current value
and momentum version.
"""
model = mc.unwrap_model(model_wrapper)
for block_name, block in model.get_named_block_list().items(): # inverted residual blocks
assert isinstance(block, mb.InvertedResidualChannels)
masks = [
bn.weight.detach().abs() > threshold
for bn in block.get_depthwise_bn()
]
if ema is not None:
masks_ema = [
ema.average('{}.{}.weight'.format(
block_name, name)).detach().abs() > threshold
for name in block.get_named_depthwise_bn().keys()
]
if not ema_only:
masks = [
mask0 | mask1 for mask0, mask1 in zip(masks, masks_ema)
]
else:
masks = masks_ema
block.compress_by_mask(masks,
ema=ema,
optimizer=optimizer,
prune_info=prune_info,
prefix=block_name,
verbose=False,
reuse_mask=FLAGS.reuse_mask)
if optimizer is not None:
assert set(optimizer.param_groups[0]['params']) == set(
model.parameters())
mc.model_profiling(model,
FLAGS.image_size,
FLAGS.image_size,
num_forwards=0,
verbose=False)
if udist.is_master():
logging.info('Model Shrink to FLOPS: {}'.format(model.n_macs))
logging.info('Current model: {}'.format(mb.output_network(model)))
def get_prune_weights(model, use_transformer=False):
"""Get variables for pruning."""
# ['features.2.ops.0.1.1.weight', 'features.2.ops.1.1.1.weight', 'features.2.ops.2.1.1.weight'...]
if use_transformer:
return get_params_by_name(mc.unwrap_model(model), FLAGS._bn_to_prune_transformer.weight)
return get_params_by_name(mc.unwrap_model(model), FLAGS._bn_to_prune.weight)
@udist.master_only
def summary_bn(model, prefix):
"""Summary BN's weights."""
weights = get_prune_weights(model)
for name, param in zip(FLAGS._bn_to_prune.weight, weights):
mc.summary_writer.add_histogram(
'{}/{}/{}'.format(prefix, 'bn_scale', name), param.detach(),
FLAGS._global_step)
if len(FLAGS._bn_to_prune.weight) > 0:
mc.summary_writer.add_histogram(
'{}/bn_scale/all'.format(prefix),
torch.cat([weight.detach() for weight in weights]),
FLAGS._global_step)
@udist.master_only
def log_pruned_info(model, flops_pruned, infos, prune_threshold):
"""Log pruning-related information."""
if udist.is_master():
logging.info('Flops threshold: {}'.format(prune_threshold))
for info in infos:
if FLAGS.prune_params['logging_verbose']:
logging.info(
'layer {}, total channel: {}, pruned channel: {}, flops'
' total: {}, flops pruned: {}, pruned rate: {:.3f}'.format(
*info))
mc.summary_writer.add_scalar(
'prune_ratio/{}/{}'.format(prune_threshold, info[0]), info[-1],
FLAGS._global_step)
logging.info('Pruned model: {}'.format(
prune.output_searched_network(model, infos, FLAGS.prune_params)))
flops_remain = model.n_macs - flops_pruned
if udist.is_master():
logging.info(
'Prune threshold: {}, flops pruned: {}, flops remain: {}'.format(
prune_threshold, flops_pruned, flops_remain))
mc.summary_writer.add_scalar('prune/flops/{}'.format(prune_threshold),
flops_remain, FLAGS._global_step)
def run_one_epoch(epoch,
loader,
model,
criterion,
optimizer,
lr_scheduler,
ema,
rho_scheduler,
meters,
max_iter=None,
phase='train'):
"""Run one epoch."""
assert phase in [
'train', 'val', 'test', 'bn_calibration'
] or phase.startswith(
'prune'), "phase not be in train/val/test/bn_calibration/prune."
train = phase == 'train'
if train:
model.train()
else:
model.eval()
if phase == 'bn_calibration':
model.apply(bn_calibration)
if not FLAGS.use_hdfs:
if FLAGS.use_distributed:
loader.sampler.set_epoch(epoch)
results = None
data_iterator = iter(loader)
if not FLAGS.use_hdfs:
if FLAGS.use_distributed:
if FLAGS.dataset == 'coco':
data_fetcher = dataflow.DataPrefetcherKeypoint(data_iterator)
else:
data_fetcher = dataflow.DataPrefetcher(data_iterator)
else:
logging.warning('Not use prefetcher')
data_fetcher = data_iterator
for batch_idx, data in enumerate(data_fetcher):
if FLAGS.dataset == 'coco':
input, target, target_weight, meta = data
# print(input.shape, target.shape, target_weight.shape, meta)
# (4, 3, 384, 288), (4, 17, 96, 72), (4, 17, 1),
else:
input, target = data
# for debug only
# if batch_idx > 100:
# break
# used for bn calibration
if max_iter is not None:
assert phase == 'bn_calibration'
if batch_idx >= max_iter:
break
target = target.cuda(non_blocking=True)
if train:
optimizer.zero_grad()
rho = rho_scheduler(FLAGS._global_step)
if FLAGS.dataset == 'coco':
outputs = model(input)
if isinstance(outputs, list):
loss = criterion(outputs[0], target, target_weight)
for output in outputs[1:]:
loss += criterion(output, target, target_weight)
else:
output = outputs
loss = criterion(output, target, target_weight)
_, avg_acc, cnt, pred = accuracy_keypoint(output.detach().cpu().numpy(),
target.detach().cpu().numpy()) # cnt=17
meters['acc'].cache(avg_acc)
meters['loss'].cache(loss)
else:
loss = mc.forward_loss(model, criterion, input, target, meters, task=FLAGS.model_kwparams.task, distill=FLAGS.distill)
if FLAGS.prune_params['method'] is not None:
loss_l2 = optim.cal_l2_loss(model, FLAGS.weight_decay,
FLAGS.weight_decay_method) # manual weight decay
loss_bn_l1 = prune.cal_bn_l1_loss(get_prune_weights(model),
FLAGS._bn_to_prune.penalty, rho)
if FLAGS.prune_params.use_transformer:
transformer_weights = get_prune_weights(model, True)
loss_bn_l1 += prune.cal_bn_l1_loss(transformer_weights,
FLAGS._bn_to_prune_transformer.penalty, rho)
transformer_dict = []
for name, weight in zip(FLAGS._bn_to_prune_transformer.weight, transformer_weights):
transformer_dict.append(sum(weight > FLAGS.model_shrink_threshold).item())
FLAGS._bn_to_prune_transformer.add_info_list('channels', transformer_dict)
FLAGS._bn_to_prune_transformer.update_penalty()
if udist.is_master() and FLAGS._global_step % FLAGS.log_interval == 0:
logging.info(transformer_dict)
# logging.info(FLAGS._bn_to_prune_transformer.penalty)
meters['loss_l2'].cache(loss_l2)
meters['loss_bn_l1'].cache(loss_bn_l1)
loss = loss + loss_l2 + loss_bn_l1
loss.backward()
if FLAGS.use_distributed:
udist.allreduce_grads(model)
if FLAGS._global_step % FLAGS.log_interval == 0:
results = mc.reduce_and_flush_meters(meters)
if udist.is_master():
logging.info('Epoch {}/{} Iter {}/{} Lr: {} {}: '.format(
epoch, FLAGS.num_epochs, batch_idx, len(loader), optimizer.param_groups[0]["lr"], phase)
+ ', '.join('{}: {:.4f}'.format(k, v)
for k, v in results.items()))
for k, v in results.items():
mc.summary_writer.add_scalar('{}/{}'.format(phase, k),
v, FLAGS._global_step)
if udist.is_master(
) and FLAGS._global_step % FLAGS.log_interval == 0:
mc.summary_writer.add_scalar('train/learning_rate',
optimizer.param_groups[0]['lr'],
FLAGS._global_step)
if FLAGS.prune_params['method'] is not None:
mc.summary_writer.add_scalar('train/l2_regularize_loss',
extract_item(loss_l2),
FLAGS._global_step)
mc.summary_writer.add_scalar('train/bn_l1_loss',
extract_item(loss_bn_l1),
FLAGS._global_step)
mc.summary_writer.add_scalar('prune/rho', rho,
FLAGS._global_step)
mc.summary_writer.add_scalar(
'train/current_epoch',
FLAGS._global_step / FLAGS._steps_per_epoch,
FLAGS._global_step)
if FLAGS.data_loader_workers > 0:
mc.summary_writer.add_scalar(
'data/train/prefetch_size',
get_data_queue_size(data_iterator), FLAGS._global_step)
if udist.is_master(
) and FLAGS._global_step % FLAGS.log_interval_detail == 0:
summary_bn(model, 'train')
optimizer.step()
if FLAGS.lr_scheduler == 'poly':
optim.poly_learning_rate(optimizer,
FLAGS.lr,
epoch * FLAGS._steps_per_epoch + batch_idx + 1,
FLAGS.num_epochs * FLAGS._steps_per_epoch)
else:
lr_scheduler.step()
if FLAGS.use_distributed and FLAGS.allreduce_bn:
udist.allreduce_bn(model)
FLAGS._global_step += 1
# NOTE: after steps count update
if ema is not None:
model_unwrap = mc.unwrap_model(model)
ema_names = ema.average_names()
params = get_params_by_name(model_unwrap, ema_names)
for name, param in zip(ema_names, params):
ema(name, param, FLAGS._global_step)
else:
if FLAGS.dataset == 'coco':
outputs = model(input)
if isinstance(outputs, list):
loss = criterion(outputs[0], target, target_weight)
for output in outputs[1:]:
loss += criterion(output, target, target_weight)
else:
output = outputs
loss = criterion(output, target, target_weight)
_, avg_acc, cnt, pred = accuracy_keypoint(output.detach().cpu().numpy(),
target.detach().cpu().numpy()) # cnt=17
meters['acc'].cache(avg_acc)
meters['loss'].cache(loss)
else:
mc.forward_loss(model, criterion, input, target, meters, task=FLAGS.model_kwparams.task, distill=False)
if not train:
results = mc.reduce_and_flush_meters(meters)
if udist.is_master():
logging.info(
'Epoch {}/{} {}: '.format(epoch, FLAGS.num_epochs, phase)
+ ', '.join(
'{}: {:.4f}'.format(k, v) for k, v in results.items()))
for k, v in results.items():
mc.summary_writer.add_scalar('{}/{}'.format(phase, k), v,
FLAGS._global_step)
return results
def train_val_test():
"""Train and val."""
torch.backends.cudnn.benchmark = True # For acceleration
# model
model, model_wrapper = mc.get_model()
ema = mc.setup_ema(model)
criterion = torch.nn.CrossEntropyLoss(reduction='mean').cuda()
criterion_smooth = optim.CrossEntropyLabelSmooth(
FLAGS.model_kwparams['num_classes'],
FLAGS['label_smoothing'],
reduction='mean').cuda()
if model.task == 'segmentation':
criterion = CrossEntropyLoss().cuda()
criterion_smooth = CrossEntropyLoss().cuda()
if FLAGS.dataset == 'coco':
criterion = JointsMSELoss(use_target_weight=True).cuda()
criterion_smooth = JointsMSELoss(use_target_weight=True).cuda()
if FLAGS.get('log_graph_only', False):
if udist.is_master():
_input = torch.zeros(1, 3, FLAGS.image_size,
FLAGS.image_size).cuda()
_input = _input.requires_grad_(True)
if isinstance(model_wrapper, (torch.nn.DataParallel, udist.AllReduceDistributedDataParallel)):
mc.summary_writer.add_graph(model_wrapper.module, (_input,), verbose=True)
else:
mc.summary_writer.add_graph(model_wrapper, (_input,), verbose=True)
return
# save init
if FLAGS.resume == '':
optimizer = optim.get_optimizer(model_wrapper, FLAGS)
logging.info('save init at : {}'.format(FLAGS.log_dir))
save_status(model_wrapper, None, optimizer, ema, 0,
1, (None, None),
os.path.join(FLAGS.log_dir, 'init_checkpoint'))
# check pretrained
if FLAGS.pretrained:
checkpoint = torch.load(FLAGS.pretrained,
map_location=lambda storage, loc: storage)
if ema:
ema.load_state_dict(checkpoint['ema'])
ema.to(get_device(model))
# update keys from external models
if isinstance(checkpoint, dict) and 'model' in checkpoint:
checkpoint = checkpoint['model']
if (hasattr(FLAGS, 'pretrained_model_remap_keys')
and FLAGS.pretrained_model_remap_keys):
new_checkpoint = {}
new_keys = list(model_wrapper.state_dict().keys())
old_keys = list(checkpoint.keys())
for key_new, key_old in zip(new_keys, old_keys):
new_checkpoint[key_new] = checkpoint[key_old]
if udist.is_master():
logging.info('remap {} to {}'.format(key_new, key_old))
checkpoint = new_checkpoint
model_wrapper.load_state_dict(checkpoint)
if udist.is_master():
logging.info('Loaded model {}.'.format(FLAGS.pretrained))
# check resume training
if FLAGS.resume:
# checkpoint = torch.load(os.path.join(FLAGS.resume,
# 'latest_checkpoint.pt'),
# map_location=lambda storage, loc: storage)
checkpoint = torch.load(FLAGS.resume,
map_location=lambda storage, loc: storage)
model_wrapper = checkpoint['model'].cuda()
model = model_wrapper.module
# model = checkpoint['model'].module
optimizer = checkpoint['optimizer']
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda()
# model_wrapper.load_state_dict(checkpoint['model'])
# optimizer.load_state_dict(checkpoint['optimizer'])
if ema:
# ema.load_state_dict(checkpoint['ema'])
ema = checkpoint['ema'].cuda()
ema.to(get_device(model))
last_epoch = checkpoint['last_epoch']
# New
FLAGS.num_epochs = FLAGS.num_epochs + 50
lr_scheduler = optim.get_lr_scheduler(optimizer, FLAGS, last_epoch=(last_epoch + 1) * FLAGS._steps_per_epoch)
lr_scheduler.last_epoch = (last_epoch + 1) * FLAGS._steps_per_epoch
best_val = extract_item(checkpoint['best_val'])
train_meters, val_meters = checkpoint['meters']
FLAGS._global_step = (last_epoch + 1) * FLAGS._steps_per_epoch
if udist.is_master():
logging.info('Loaded checkpoint {} at epoch {}.'.format(
FLAGS.resume, last_epoch))
else:
lr_scheduler = optim.get_lr_scheduler(optimizer, FLAGS)
# last_epoch = lr_scheduler.last_epoch
last_epoch = -1
best_val = 1.
if not FLAGS.distill:
train_meters = mc.get_meters('train', FLAGS.prune_params['method'])
val_meters = mc.get_meters('val')
else:
train_meters = mc.get_distill_meters('train', FLAGS.prune_params['method'])
val_meters = mc.get_distill_meters('val')
if FLAGS.model_kwparams.task == 'segmentation':
best_val = 0.
if not FLAGS.distill:
train_meters = mc.get_seg_meters('train', FLAGS.prune_params['method'])
val_meters = mc.get_seg_meters('val')
else:
train_meters = mc.get_seg_distill_meters('train', FLAGS.prune_params['method'])
val_meters = mc.get_seg_distill_meters('val')
FLAGS._global_step = 0
if not FLAGS.resume and udist.is_master():
logging.info(model_wrapper)
assert FLAGS.profiling, '`m.macs` is used for calculating penalty'
# if udist.is_master():
# model.apply(lambda m: print(m))
if FLAGS.profiling:
if 'gpu' in FLAGS.profiling:
mc.profiling(model, use_cuda=True)
if 'cpu' in FLAGS.profiling:
mc.profiling(model, use_cuda=False)
if FLAGS.dataset == 'cityscapes':
(train_set, val_set, test_set) = seg_dataflow.cityscapes_datasets(FLAGS)
segval = SegVal(num_classes=19)
elif FLAGS.dataset == 'ade20k':
(train_set, val_set, test_set) = seg_dataflow.ade20k_datasets(FLAGS)
segval = SegVal(num_classes=150)
elif FLAGS.dataset == 'coco':
(train_set, val_set, test_set) = seg_dataflow.coco_datasets(FLAGS)
# print(len(train_set), len(val_set)) # 149813 104125
segval = None
else:
# data
(train_transforms, val_transforms,
test_transforms) = dataflow.data_transforms(FLAGS)
(train_set, val_set, test_set) = dataflow.dataset(train_transforms,
val_transforms,
test_transforms, FLAGS)
segval = None
(train_loader, calib_loader, val_loader,
test_loader) = dataflow.data_loader(train_set, val_set, test_set, FLAGS)
# get bn's weights
if FLAGS.prune_params.use_transformer:
FLAGS._bn_to_prune, FLAGS._bn_to_prune_transformer = prune.get_bn_to_prune(model, FLAGS.prune_params)
else:
FLAGS._bn_to_prune = prune.get_bn_to_prune(model, FLAGS.prune_params)
rho_scheduler = prune.get_rho_scheduler(FLAGS.prune_params,
FLAGS._steps_per_epoch)
if FLAGS.test_only and (test_loader is not None):
if udist.is_master():
logging.info('Start testing.')
test_meters = mc.get_meters('test')
validate(last_epoch, calib_loader, test_loader, criterion, test_meters,
model_wrapper, ema, 'test')
return
# already broadcast by AllReduceDistributedDataParallel
# optimizer load same checkpoint/same initialization
if udist.is_master():
logging.info('Start training.')
for epoch in range(last_epoch + 1, FLAGS.num_epochs):
# for epoch in range(last_epoch + 1, last_epoch + 11): # retrain (w/o grow) 10 epochs right after pruning
# train
results = run_one_epoch(epoch,
train_loader,
model_wrapper,
criterion_smooth,
optimizer,
lr_scheduler,
ema,
rho_scheduler,
train_meters,
phase='train')
if ((epoch + 1) % FLAGS.eval_interval == 0) or ((epoch + 1) == FLAGS.num_epochs):
# val
results, model_eval_wrapper = validate(epoch, calib_loader, val_loader,
criterion, val_meters,
model_wrapper, ema, 'val', segval, val_set)
model_kwparams = mb.output_network(mc.unwrap_model(model_wrapper))
if udist.is_master():
if FLAGS.model_kwparams.task == 'classification' and results['top1_error'] < best_val:
best_val = results['top1_error']
logging.info('New best validation top1 error: {:.4f}'.format(best_val))
save_status(model_wrapper, model_kwparams, optimizer, ema,
epoch, best_val, (train_meters, val_meters),
os.path.join(FLAGS.log_dir, 'best_model'))
elif FLAGS.model_kwparams.task == 'segmentation' and FLAGS.dataset != 'coco' and results[
'mIoU'] > best_val:
best_val = results['mIoU']
logging.info('New seg mIoU: {:.4f}'.format(best_val))
save_status(model_wrapper, model_kwparams, optimizer, ema,
epoch, best_val, (train_meters, val_meters),
os.path.join(FLAGS.log_dir, 'best_model'))
elif FLAGS.dataset == 'coco' and results > best_val:
best_val = results
logging.info('New Result: {:.4f}'.format(best_val))
save_status(model_wrapper, model_kwparams, optimizer, ema,
epoch, best_val, (train_meters, val_meters),
os.path.join(FLAGS.log_dir, 'best_model'))
# save latest checkpoint
save_status(model_wrapper, model_kwparams, optimizer, ema, epoch,
best_val, (train_meters, val_meters),
os.path.join(FLAGS.log_dir, 'retrain_checkpoint'))
# validate
# test the sparsity actually meet the requirement
model = model_wrapper.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
prune_ckpt = model.state_dict()
if udist.is_master():
# print(prune_ckpt.keys())
for key in prune_ckpt.keys():
if 'mask' in key and 'bias' not in key:
prune_tensor = prune_ckpt[key]
# print('key: {}'.format(key))
# print('specific mask: total params {}; nonzero params {}'.format(prune_tensor.numel(), torch.nonzero(prune_tensor).size()))
# print(torch.flatten(prune_tensor)[:18])
# print(prune_tensor.requires_grad)
if udist.is_master():
logging.info('Num of Params: {}'.format(model.n_params))
logging.info('Num of MACs: {}'.format(model.n_macs * 1024 * 512 / 224 / 224))
remaining_params, total_params = 0, 0
for mask, _ in masked_parameters(model,
FLAGS.unstructured_prune_params['prune_bias'],
FLAGS.unstructured_prune_params['prune_batchnorm']
):
remaining_params += mask.detach().cpu().numpy().sum()
total_params += mask.numel()
if udist.is_master():
logging.info('Num of remaining params: {}; Num of total_params: {}'.format(remaining_params, total_params))
logging.info('Num of sparse Params: {}'.format(model.n_params - total_params + remaining_params))
logging.info('Num of sparse MACs: {}'.format(model.n_macs * 1024 * 512 / 224 / 224 * remaining_params / total_params))
return
def validate(epoch, calib_loader, val_loader, criterion, val_meters,
model_wrapper, ema, phase, segval=None, val_set=None):
"""Calibrate and validate."""
assert phase in ['test', 'val']
model_eval_wrapper = mc.get_ema_model(ema, model_wrapper)
# bn_calibration
if FLAGS.prune_params['method'] is not None:
if FLAGS.get('bn_calibration', False):
if not FLAGS.use_distributed:
logging.warning(
'Only GPU0 is used when calibration when use DataParallel')
with torch.no_grad():
_ = run_one_epoch(epoch,
calib_loader,
model_eval_wrapper,
criterion,
None,
None,
None,
None,
val_meters,
max_iter=FLAGS.bn_calibration_steps,
phase='bn_calibration')
if FLAGS.use_distributed:
udist.allreduce_bn(model_eval_wrapper)
# val
with torch.no_grad():
if FLAGS.model_kwparams.task == 'segmentation':
if FLAGS.dataset == 'coco':
results = 0
if udist.is_master():
results = keypoint_val(val_set, val_loader, model_eval_wrapper.module, criterion)
else:
assert segval is not None
results = segval.run(epoch,
val_loader,
model_eval_wrapper.module if FLAGS.single_gpu_test else model_eval_wrapper,
FLAGS)
else:
results = run_one_epoch(epoch,
val_loader,
model_eval_wrapper,
criterion,
None,
None,
None,
None,
val_meters,
phase=phase)
summary_bn(model_eval_wrapper, phase)
return results, model_eval_wrapper
def main():
"""Entry."""
NUM_IMAGENET_TRAIN = 1281167
if FLAGS.dataset == 'cityscapes':
NUM_IMAGENET_TRAIN = 2975
elif FLAGS.dataset == 'ade20k':
NUM_IMAGENET_TRAIN = 20210
elif FLAGS.dataset == 'coco':
NUM_IMAGENET_TRAIN = 149813
mc.setup_distributed(NUM_IMAGENET_TRAIN)
if FLAGS.net_params and FLAGS.model_kwparams.task == 'segmentation':
tag, input_channels, block1, block2, block3, block4, last_channel = FLAGS.net_params.split('-')
input_channels = [int(item) for item in input_channels.split('_')]
block1 = [int(item) for item in block1.split('_')]
block2 = [int(item) for item in block2.split('_')]
block3 = [int(item) for item in block3.split('_')]
block4 = [int(item) for item in block4.split('_')]
last_channel = int(last_channel)
inverted_residual_setting = []
for item in [block1, block2, block3, block4]:
for _ in range(item[0]):
inverted_residual_setting.append(
[item[1], item[2:-int(len(item) / 2 - 1)], item[-int(len(item) / 2 - 1):]])
FLAGS.model_kwparams.input_channel = input_channels
FLAGS.model_kwparams.inverted_residual_setting = inverted_residual_setting
FLAGS.model_kwparams.last_channel = last_channel
if udist.is_master():
FLAGS.log_dir = '{}/{}'.format(FLAGS.log_dir,
time.strftime("%Y%m%d-%H%M%S"))
# yapf: disable
create_exp_dir(FLAGS.log_dir, FLAGS.config_path, blacklist_dirs=[
'exp', '.git', 'pretrained', 'tmp', 'deprecated', 'bak', 'output'])
# yapf: enable
setup_logging(FLAGS.log_dir)
for k, v in _ENV_EXPAND.items():
logging.info('Env var expand: {} to {}'.format(k, v))
logging.info(FLAGS)
set_random_seed(FLAGS.get('random_seed', 0))
with mc.SummaryWriterManager():
train_val_test()
if __name__ == "__main__":
main()