-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
121 lines (96 loc) · 3.74 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from scipy.ndimage import convolve
import numpy as np
from PIL import Image
from PIL import ImageOps
def vetorize_to_file(arr, name, path, mi = 50, ma = 10000):
divisor = max(arr)
with open(path + name + '.txt', 'w') as file:
file.write('[')
for i in range(len(arr)):
num = (arr[i]/divisor)*(ma - mi) + mi
num = float(int(num*10))/10
if i == len(arr)-1:
file.write(str(num) + ']')
else:
file.write(str(num) + ', ')
def resize_image(max_h, max_w, img):
size = img.size
amax = np.argmax(size)
if amax == 0:
scale = max_h/size[amax]
else:
scale = max_w/size[amax]
new_size = (int(size[0]*scale), int(size[1]*scale))
return img.resize(new_size)
if __name__ == '__main__':
# Padroes de configuração
PATH = 'experiencias/' + input('Digite o nome da pasta da experiência (exemplo: exp1):\n>> ') + '/'
IMG_NAME = input('Digite o nome da imagem (exemplo: img_padrao.png):\n>> ')
MAX_HEIGHT = MAX_WIDTH = 50
# Kernels
kernel_edge_1 = np.array([np.array(
[[1, 0, -1],
[0, 0, 0],
[-1, 0, 1]]) for i in range(3)])
kernel_edge_2 = np.array([np.array(
[[0, 1, 0],
[1, -4, 1],
[0, 1, 0]]) for i in range(3)])
kernel_edge_3 = np.array([np.array(
[[-1, -1, -1],
[-1, 8, -1],
[-1, -1, -1]]) for i in range(3)])
# Leitura da imagem
img = resize_image(MAX_HEIGHT, MAX_WIDTH, Image.open(PATH+IMG_NAME))
# Conversão aos formatos LA e HSV
imgLA = img.convert("LA")
imgHSV = img.convert("HSV")
# Convoluções
imgEDGE1 = Image.fromarray(convolve(np.asarray(imgLA), kernel_edge_1))
imgEDGE2 = Image.fromarray(convolve(np.asarray(imgLA), kernel_edge_2))
imgEDGE3 = Image.fromarray(convolve(np.asarray(imgLA), kernel_edge_3))
# Escrevendo nos arquivos
sufix_name = IMG_NAME.split('.')[0] # Nome padrao das saidas
# Tonalidade ([H]SV)
mi, ma = 0, 88
file_name = sufix_name + '_tonalidade'
Image.fromarray(np.asarray(imgHSV)[:,:,0]).save(PATH + file_name + '.png') # save image
arr = np.asarray(imgHSV)[:,:,0].reshape(-1)
vetorize_to_file(arr, file_name, PATH, mi = mi, ma = ma)
# Saturação (H[S]V)
mi, ma = 0, 1
file_name = sufix_name + '_saturacao'
Image.fromarray(np.asarray(imgHSV)[:,:,1]).save(PATH + file_name + '.png') # save image
arr = np.asarray(imgHSV)[:,:,1].reshape(-1)
vetorize_to_file(arr, file_name, PATH, mi = mi, ma = ma)
# Brilho (HS[V])
mi, ma = 0, 1
file_name = sufix_name + '_brilho'
Image.fromarray(np.asarray(imgHSV)[:,:,2]).save(PATH + file_name + '.png') # save image
arr = np.asarray(imgHSV)[:,:,2].reshape(-1)
vetorize_to_file(arr, file_name, PATH, mi = mi, ma = ma)
# Preto e Branco
mi, ma = 0, 2
file_name = sufix_name + '_pb'
Image.fromarray(np.asarray(imgLA)[:,:,0]).save(PATH + file_name + '.png') # save image
arr = np.asarray(imgLA)[:,:, 0].reshape(-1)
vetorize_to_file(arr, file_name, PATH, mi = mi, ma = ma)
# Edge1
mi, ma = 0, 1
file_name = sufix_name + '_edge1'
Image.fromarray(np.asarray(imgEDGE1)[:,:,0]).save(PATH + file_name + '.png') # save image
arr = np.asarray(imgEDGE1)[:,:, 1].reshape(-1)
vetorize_to_file(arr, file_name, PATH, mi = mi, ma = ma)
# Edge2
mi, ma = 0, 1
file_name = sufix_name + '_edge2'
Image.fromarray(np.asarray(imgEDGE2)[:,:,0]).save(PATH + file_name + '.png') # save image
arr = np.asarray(imgEDGE1)[:,:, 1].reshape(-1)
vetorize_to_file(arr, file_name, PATH, mi = mi, ma = ma)
# Edge3
mi, ma = 0, 1
file_name = sufix_name + '_edge3'
Image.fromarray(np.asarray(imgEDGE3)[:,:,0]).save(PATH + file_name + '.png') # save image
arr = np.asarray(imgEDGE1)[:,:, 1].reshape(-1)
vetorize_to_file(arr, file_name, PATH, mi = mi, ma = ma)
print('Todos os arquivos foram gerados com sucesso!')