The row-oriented API offers a convenient way to abstract the column-oriented nature of Parquet files at the expense of memory, speed and flexibility. It lets one write a whole row in a single call, often resulting in more readable code.
For example, writing a file with the row-oriented API and using a tuple to represent a row of values:
var timestamps = new DateTime[] { /* ... */ };
var objectIds = new int[] { /* ... */ };
var values = timestamps.Select(t => objectIds.Select(o => (float) rand.NextDouble()).ToArray()).ToArray();
var columns = new[] {"Timestamp", "ObjectId", "Value"};
using var rowWriter = ParquetFile.CreateRowWriter<(DateTime, int, float)>("float_timeseries.parquet", columns);
for (int i = 0; i != timestamps.Length; ++i)
{
for (int j = 0; j != objectIds.Length; ++j)
{
rowWriter.WriteRow((timestamps[i], objectIds[j], values[i][j]));
}
}
// Write a new row group (pretend we have new timestamps, objectIds and values)
rowWriter.StartNewRowGroup();
for (int i = 0; i != timestamps.Length; ++i)
{
for (int j = 0; j != objectIds.Length; ++j)
{
rowWriter.WriteRow((timestamps[i], objectIds[j], values[i][j]));
}
}
rowWriter.Close();
Internally, ParquetSharp will build up a buffer of row values and then write each column when the file is closed or a new row group is started. This means all values in a row group must be stored in memory at once, and the row values buffer must be resized and copied as it grows. Therefore, it's recommended to use the lower-level column oriented API if performance is a concern.
The row-oriented API allows for specifying your own name-independent/order-independent column mapping using the optional MapToColumn
attribute.
struct MyRow
{
[MapToColumn("ColumnA")]
public long MyKey;
[MapToColumn("ColumnB")]
public string MyValue;
}
using (var rowReader = ParquetFile.CreateRowReader<MyRow>("example.parquet"))
{
for (int i = 0; i < rowReader.FileMetaData.NumRowGroups; ++i)
{
var values = rowReader.ReadRows(i);
foreach (MyRow r in values)
{
Console.WriteLine(r.MyKey + "/" + r.MyValue);
}
}
}
The row-oriented API supports reading and writing custom types by providing a LogicalTypeFactory
and a LogicalReadConverterFactory
or LogicalWriteConverterFactory
.
using var buffer = new ResizableBuffer();
var logicalWriteConverterFactory = new WriteConverterFactory();
var logicalWriteTypeFactory = new WriteTypeFactory();
var rows = new[]
{
new Row3 {A = 123, B = new VolumeInDollars(3.14f)},
new Row3 {A = 456, B = new VolumeInDollars(1.27f)},
new Row3 {A = 789, B = new VolumeInDollars(6.66f)}
};
using (var outputStream = new BufferOutputStream(buffer))
{
using var writer = ParquetFile.CreateRowWriter<TTupleWrite>(outputStream, logicalTypeFactory: logicalWriteTypeFactory, logicalWriteConverterFactory: logicalWriteConverterFactory);
writer.WriteRows(rows);
writer.Close();
}
using var buffer = new ResizableBuffer();
var logicalReadConverterFactory = new ReadConverterFactory();
var logicalReadTypeFactory = new ReadTypeFactory();
using var inputStream = new BufferReader(buffer);
using var reader = ParquetFile.CreateRowReader<TTupleRead>(inputStream, logicalTypeFactory: logicalReadTypeFactory, logicalReadConverterFactory: logicalReadConverterFactory);
var values = reader.ReadRows(rowGroup: 0);
private sealed class Row3 : IEquatable<Row3>
{
public int A;
public VolumeInDollars B;
public bool Equals(Row3? other)
{
if (ReferenceEquals(null, other)) return false;
if (ReferenceEquals(this, other)) return true;
return A == other.A && B.Equals(other.B);
}
}
[StructLayout(LayoutKind.Sequential)]
private readonly struct VolumeInDollars : IEquatable<VolumeInDollars>
{
public VolumeInDollars(float value) { Value = value; }
public readonly float Value;
public bool Equals(VolumeInDollars other) => Value.Equals(other.Value);
}
private sealed class WriteTypeFactory : LogicalTypeFactory
{
public override bool TryGetParquetTypes(Type logicalSystemType, out (LogicalType? logicalType, Repetition repetition, PhysicalType physicalType) entry)
{
if (logicalSystemType == typeof(VolumeInDollars)) return base.TryGetParquetTypes(typeof(float), out entry);
return base.TryGetParquetTypes(logicalSystemType, out entry);
}
}
private sealed class WriteConverterFactory : LogicalWriteConverterFactory
{
public override Delegate GetConverter<TLogical, TPhysical>(ColumnDescriptor columnDescriptor, ByteBuffer? byteBuffer)
{
if (typeof(TLogical) == typeof(VolumeInDollars)) return LogicalWrite.GetNativeConverter<VolumeInDollars, float>();
return base.GetConverter<TLogical, TPhysical>(columnDescriptor, byteBuffer);
}
}
private sealed class ReadTypeFactory : LogicalTypeFactory
{
public override (Type physicalType, Type logicalType) GetSystemTypes(ColumnDescriptor descriptor, Type? columnLogicalTypeOverride)
{
// We have to use the column name to know what type to expose.
Assert.IsNull(columnLogicalTypeOverride);
using var descriptorPath = descriptor.Path;
return base.GetSystemTypes(descriptor, descriptorPath.ToDotVector().First() == "B" ? typeof(VolumeInDollars) : null);
}
}
private sealed class ReadConverterFactory : LogicalReadConverterFactory
{
public override Delegate? GetDirectReader<TLogical, TPhysical>()
{
// Optional: the following is an optimisation and not strictly needed (but helps with speed).
// Since VolumeInDollars is bitwise identical to float, we can read the values in-place.
if (typeof(TLogical) == typeof(VolumeInDollars)) return LogicalRead.GetDirectReader<VolumeInDollars, float>();
return base.GetDirectReader<TLogical, TPhysical>();
}
public override Delegate GetConverter<TLogical, TPhysical>(ColumnDescriptor columnDescriptor, ColumnChunkMetaData columnChunkMetaData)
{
// VolumeInDollars is bitwise identical to float, so we can reuse the native converter.
if (typeof(TLogical) == typeof(VolumeInDollars)) return LogicalRead.GetNativeConverter<VolumeInDollars, float>();
return base.GetConverter<TLogical, TPhysical>(columnDescriptor, columnChunkMetaData);
}
}
The row-oriented API works with F# types,
but one important issue to note is that if you are mapping an internal type,
all fields must have the MapToColumn
attribute applied to be mapped to Parquet columns.
This is because ParquetSharp will only map public fields and properties of a type by default,
and all fields of an internal F# type are private.
However, the MapToColumn
attribute can be applied to private properties to
opt-in to including them in the column mapping.