-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
673 lines (508 loc) · 26.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
from sklearn.linear_model import SGDClassifier
from sklearn.calibration import CalibratedClassifierCV
import scripts as scr
import numpy as np
import itertools
from scipy.spatial.distance import euclidean
class Base_Data_Generator():
def __init__(self, prot_ints_dict, pairs_list, stat_dict, batch_size=1, shuffle=True, prot_mean_std_dict = {},
x_={'default':[36.9, 40.2, 43.9, 46.6, 48.6, 52.7, 55.3, 58.5, 61.2, 64]}):
self.base_init(prot_ints_dict, pairs_list, stat_dict, batch_size=batch_size,
shuffle=shuffle, x_=x_, prot_mean_std_dict=prot_mean_std_dict,)
def base_init(self, prot_ints_dict, pairs_list, stat_dict, batch_size=1, shuffle=True,
prot_mean_std_dict = {},
x_={'default':[36.9, 40.2, 43.9, 46.6, 48.6, 52.7, 55.3, 58.5, 61.2, 64]}):
self.prot_ints_dict = prot_ints_dict
self.pairs_list = pairs_list
self.stat_dict = stat_dict
self.prot_mean_std_dict = prot_mean_std_dict
self.dist_func = euclidean
self.batch_size = batch_size
self.shuffle = shuffle
self.x_ = x_
for key,item in self.x_.items():
self.x_[key] = item - np.min(item)
self.x_[key] = item / np.max(item)
self.pair_dict = {}
for pair in self.pairs_list:
self.pair_dict[pair] = -1
del self.pairs_list
self.list_IDs = list(self.pair_dict.keys())
self.on_epoch_end()
self.create_deriv_dict()
self.create_integral_dict()
def create_deriv_dict(self):
self.deriv_dict = {}
for key, value_list in self.prot_ints_dict.items():
for dataset_key in self.x_.keys():
if dataset_key in key:
x_ = self.x_[dataset_key]
break
else:
x_ = self.x_['default']
temp_len = len(x_)
if len(value_list) > temp_len:
value_list = value_list[0:temp_len]
while len(value_list) < temp_len:
value_list = np.append(value_list, value_list[-1])
value_list = np.reshape(value_list, (temp_len))
distance, y1, y2 = scr.calculate_weighted_distance(
x_, value_list, value_list, return_derivative_list=True, normalize=True)
self.deriv_dict[key] = y1
def create_integral_dict(self):
self.integral_dict = {}
for key, value_list in self.prot_ints_dict.items():
for dataset_key in self.x_.keys():
if dataset_key in key:
x_ = self.x_[dataset_key]
break
else:
x_ = self.x_['default']
temp_len = len(x_)
if len(value_list) > temp_len:
value_list = value_list[0:temp_len]
while len(value_list) < temp_len:
value_list = np.append(value_list, value_list[-1])
value_list = np.reshape(value_list, (temp_len))
distance, y1, y2 = scr.calculate_integral_distance(
x_, value_list, value_list, return_integral_list=True, normalize=True)
self.integral_dict[key] = y1
def on_epoch_end(self):
self.indexes = np.arange(len(self.list_IDs))
# if self.shuffle == True:
# np.random.shuffle(self.indexes)
def mean_euc_dist(self,y1, y2):
cdist = []
for i, val1 in enumerate(y1):
val1 = float(val1)
val2 = float(y2[i])
if val1 == 0 and val2 == 0:
cdist_ = 0
else:
cdist_ = (val1 - val2) ** 2
cdist.append(cdist_)
return (np.mean(cdist)) ** 0.5
def base_data_generation(self, list_IDs_temp):
# if self.batch_size == None:
# batch_size = len(self.list_IDs)
# else:
# batch_size = self.batch_size
batch_size = len(list_IDs_temp)
cdist = np.empty((batch_size, 13))
curve_corr = np.empty((batch_size, 7))
rel_dist = np.empty((batch_size, 3))
# Generate data
for i, ID in enumerate(list_IDs_temp):
gene1 = ID[0]
gene2 = ID[1]
y1 = self.deriv_dict[gene1]
y2 = self.deriv_dict[gene2]
yi1 = self.integral_dict[gene1]
yi2 = self.integral_dict[gene2]
# Store sample
try:
sample = gene1.split('*')[1]
mean = self.stat_dict[sample]['mean']
std = self.stat_dict[sample]['std']
except:
mean = self.stat_dict['mean']
std = self.stat_dict['std']
cdist[i, 0] = (self.dist_func(y1[0], y2[0]) - mean)/std
cdist[i, 1] = euclidean(y1[1], y2[1])
cdist[i, 2] = self.mean_euc_dist(y1[1], y2[1])
cdist[i, 3] = euclidean(y1[2], y2[2])
cdist[i, 4] = self.mean_euc_dist(y1[2], y2[2])
cdist[i, 5] = euclidean(y1[3], y2[3])
cdist[i, 6] = self.mean_euc_dist(y1[3], y2[3])
cdist[i, 7] = euclidean(yi1[1], yi2[1])
cdist[i, 8] = self.mean_euc_dist(yi1[1], yi2[1])
cdist[i, 9] = euclidean(yi1[2], yi2[2])
cdist[i, 10] = self.mean_euc_dist(yi1[2], yi2[2])
cdist[i, 11] = euclidean(yi1[3], yi2[3])
cdist[i, 12] = self.mean_euc_dist(yi1[3], yi2[3])
curve_corr[i, 0] = np.corrcoef(y1[0], y2[0])[0][1]
curve_corr[i, 1] = np.corrcoef(y1[1], y2[1])[0][1]
curve_corr[i, 2] = np.corrcoef(y1[2], y2[2])[0][1]
curve_corr[i, 3] = np.corrcoef(y1[3], y2[3])[0][1]
curve_corr[i, 4] = np.corrcoef(yi1[1], yi2[1])[0][1]
curve_corr[i, 5] = np.corrcoef(yi1[2], yi2[2])[0][1]
curve_corr[i, 6] = np.corrcoef(yi1[3], yi2[3])[0][1]
stats_1 = self.prot_mean_std_dict[gene1]
stats_2 = self.prot_mean_std_dict[gene2]
rel_1 = (euclidean(y1[0], y2[0]) - stats_1[0])/stats_1[1]
rel_2 = (euclidean(y1[0], y2[0]) - stats_2[0])/stats_2[1]
rel_dist[i,] = [np.min([rel_1,rel_2]), np.mean([rel_1,rel_2]), np.max([rel_1,rel_2])]
return cdist, curve_corr, rel_dist,
def data_generation(self, list_IDs_temp):
out = self.base_data_generation(list_IDs_temp)
X = np.concatenate(out, axis=-1)
return X
def __len__(self):
if self.batch_size == None:
return 1
else:
return int(np.ceil(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
if self.batch_size == None:
list_IDs_temp = self.list_IDs
else:
# Generate indexes of the batch
indexes = self.indexes[index * self.batch_size:(index + 1) * self.batch_size]
# Find list of IDs
list_IDs_temp = [self.list_IDs[k] for k in indexes]
# Generate data
X = self.data_generation(list_IDs_temp)
return X, list_IDs_temp
class Extended_Data_Generator(Base_Data_Generator):
def __init__(self, prot_ints_dict, pairs_list, stat_dict, batch_size=1, shuffle=True, prot_mean_std_dict={},
x_={'default':[36.9, 40.2, 43.9, 46.6, 48.6, 52.7, 55.3, 58.5, 61.2, 64]}):
super().__init__(prot_ints_dict, pairs_list, stat_dict, batch_size=batch_size,
shuffle=shuffle, prot_mean_std_dict=prot_mean_std_dict, x_=x_)
self.base_init(prot_ints_dict, pairs_list, stat_dict,batch_size=batch_size, shuffle=shuffle, x_=x_,
prot_mean_std_dict=prot_mean_std_dict)
def other_info_init(self, prior_dict=None, pfam_dict=None, properties_dict=None):
self.prior_dict=prior_dict
self.pfam_dict=pfam_dict
self.properties_dict=properties_dict
if self.pfam_dict != None:
self.domain_co_occurance_dict = scr.load_object('./data/model_features/human_herpesvirus_gs_pfam_domain_co_occurance_dict')
self.family_co_occurance_dict = scr.load_object('./data/model_features/human_herpesvirus_gs_pfam_family_co_occurance_dict')
self.clan_co_occurance_dict = scr.load_object('./data/model_features/human_herpesvirus_gs_pfam_clan_co_occurance_dict')
def pfam_process(self, list1, list2, co_occurance_dict):
shared_funcs = 0
scores = []
for l1 in list1:
if l1 == '':
continue
l1 = l1.replace(' ', '')
for l2 in list2:
if l2 == '':
continue
l2 = l2.replace(' ', '')
if (l1, l2) in co_occurance_dict:
scores.append(co_occurance_dict[l1, l2])
elif (l2, l1) in co_occurance_dict:
scores.append(co_occurance_dict[l2, l1])
else:
scores.append(0)
if l1 == l2:
shared_funcs = shared_funcs + 1
if len(scores) > 0:
output = [np.min(scores), np.mean(scores), np.max(scores), shared_funcs]
else:
output = [0, 0, 0, shared_funcs]
return output
def shared_attributes(self, attribute_list1, attribute_list2, norm=False):
num_shared = 0
for attr in attribute_list1:
if attr in attribute_list2:
num_shared = num_shared + 1
if norm and max(len(attribute_list1), len(attribute_list2)) > 0:
num_shared = num_shared / max(len(attribute_list1), len(attribute_list2))
return num_shared
def other_data_generation(self, list_IDs_temp):
# if self.batch_size == None:
# batch_size = len(self.list_IDs)
# else:
# batch_size = self.batch_size
batch_size = len(list_IDs_temp)
prior = np.empty((batch_size, 1))
length = np.empty((batch_size, 2))
gravy = np.empty((batch_size, 2))
molecular_weight = np.empty((batch_size, 2))
aromaticity = np.empty((batch_size, 2))
instability_index = np.empty((batch_size, 2))
isoelectric_point = np.empty((batch_size, 2))
secondary_structure_fraction = np.empty((batch_size, 6))
domains = np.empty((batch_size, 4))
families = np.empty((batch_size, 4))
clans = np.empty((batch_size, 4))
# Generate data
for i, ID in enumerate(list_IDs_temp):
gene1 = ID[0]
gene2 = ID[1]
true_gene1 = gene1.split('*')[0].split('_')[0]
true_gene2 = gene2.split('*')[0].split('_')[0]
try:
sample = gene1.split('*')[1]
except:
sample = 'predict'
if self.prior_dict != None:
tissue = self.prior_dict['info'][sample]
tissue_dict = self.prior_dict[tissue]
if (true_gene1, true_gene2) in tissue_dict:
prior[i,] = float(tissue_dict[true_gene1, true_gene2])
elif (true_gene2, true_gene1) in tissue_dict:
prior[i,] = float(tissue_dict[true_gene2, true_gene1])
else:
prior[i,] = 0.0
if true_gene1 in self.pfam_dict and true_gene2 in self.pfam_dict:
domains_1, families_1, clans_1 = scr.create_domains_families_clans_lists(self.pfam_dict[true_gene1])
domains_2, families_2, clans_2 = scr.create_domains_families_clans_lists(self.pfam_dict[true_gene2])
domains[i,] = self.pfam_process(domains_1, domains_2, self.domain_co_occurance_dict)
families[i,] = self.pfam_process(families_1, families_2, self.family_co_occurance_dict)
clans[i,] = self.pfam_process(clans_1, clans_2, self.clan_co_occurance_dict)
else:
domains[i,] = [0, 0, 0, 0]
families[i,] = [0, 0, 0, 0]
clans[i,] = [0, 0, 0, 0]
if true_gene1 in self.properties_dict and true_gene2 in self.properties_dict:
gene1_props = self.properties_dict[true_gene1]
gene2_props = self.properties_dict[true_gene2]
gene1_length = gene1_props['length'] * 0.001
gene2_length = gene2_props['length'] * 0.001
gene1_gravy = gene1_props['gravy'] * 1
gene2_gravy = gene2_props['gravy'] * 1
gene1_mw = gene1_props['molecular_weight'] * 0.0001
gene2_mw = gene2_props['molecular_weight'] * 0.0001
gene1_arom = gene1_props['aromaticity'] * 1
gene2_arom = gene2_props['aromaticity'] * 1
gene1_ii = gene1_props['instability_index'] * 0.01
gene2_ii = gene2_props['instability_index'] * 0.01
gene1_ip = gene1_props['isoelectric_point'] * 0.1
gene2_ip = gene2_props['isoelectric_point'] * 0.1
gene1_ssf = gene1_props['secondary_structure_fraction'] * 1
gene2_ssf = gene2_props['secondary_structure_fraction'] * 1
length[i,] = [(gene1_length + gene2_length) / 2.0, abs(gene1_length - gene2_length)]
gravy[i,] = [(gene1_gravy + gene2_gravy) / 2.0, abs(gene1_gravy - gene2_gravy)]
molecular_weight[i,] = [(gene1_mw + gene2_mw) / 2.0, abs(gene1_mw - gene2_mw)]
aromaticity[i,] = [(gene1_arom + gene2_arom) / 2.0, abs(gene1_arom - gene2_arom)]
instability_index[i,] = [(gene1_ii + gene2_ii) / 2.0, abs(gene1_ii - gene2_ii)]
isoelectric_point[i,] = [(gene1_ip + gene2_ip) / 2.0, abs(gene1_ip - gene2_ip)]
secondary_structure_fraction[i,] = list((gene1_ssf + gene2_ssf) / 2.0) + list(
abs(gene1_ssf - gene2_ssf))
else:
length[i,] = np.zeros(2)
gravy[i,] = np.zeros(2)
molecular_weight[i,] = np.zeros(2)
aromaticity[i,] = np.zeros(2)
instability_index[i,] = np.zeros(2)
isoelectric_point[i,] = np.zeros(2)
secondary_structure_fraction[i,] = np.zeros(6)
return_dict = {}
return_dict['prior'] = prior
return_dict['length'] = length
return_dict['gravy'] = gravy
return_dict['molecular_weight'] = molecular_weight
return_dict['aromaticity'] = aromaticity
return_dict['instability_index'] = instability_index
return_dict['isoelectric_point'] = isoelectric_point
return_dict['secondary_structure_fraction'] = secondary_structure_fraction
return_dict['domains'] = domains
return_dict['families'] = families
return_dict['clans'] = clans
return return_dict
def data_generation(self, list_IDs_temp):
out = self.base_data_generation(list_IDs_temp)
base = np.concatenate(out, axis=-1)
other_info_dict = self.other_data_generation(list_IDs_temp)
prior = other_info_dict['prior']
length = other_info_dict['length']
gravy = other_info_dict['gravy']
molecular_weight = other_info_dict['molecular_weight']
aromaticity = other_info_dict['aromaticity']
instability_index = other_info_dict['instability_index']
isoelectric_point = other_info_dict['isoelectric_point']
secondary_structure_fraction = other_info_dict['secondary_structure_fraction']
props = np.concatenate((length, gravy, molecular_weight, aromaticity,
instability_index, isoelectric_point, secondary_structure_fraction), axis=-1)
domains = other_info_dict['domains']
families = other_info_dict['families']
clans = other_info_dict['clans']
pfam = np.concatenate((domains, families, clans), axis=-1)
if self.prior_dict != None:
lr1 = base
lr2 = np.concatenate((base, props), axis=-1)
lr3 = np.concatenate((base, pfam), axis=-1)
lr4 = np.concatenate((base, prior), axis=-1)
lr5 = np.concatenate((base, props, pfam), axis=-1)
lr6 = np.concatenate((base, prior, pfam), axis=-1)
lr7 = np.concatenate((base, prior, props), axis=-1)
lr8 = np.concatenate((base, prior, props, pfam), axis=-1)
X = [lr1,lr2,lr3,lr4,lr5,lr6,lr7,lr8]
else:
lr1 = base
lr2 = np.concatenate((base, props), axis=-1)
lr3 = np.concatenate((base, pfam), axis=-1)
lr4 = np.concatenate((base, props, pfam), axis=-1)
X = [lr1, lr2, lr3, lr4]
return X
class Base_Model():
def __init__(self, model_address=None, loss='log', penalty='l2', max_iter=1000, n_jobs=-1, warm_start=True):
if model_address!=None:
self.load_model(model_address)
else:
self.create_model(loss=loss, penalty=penalty, max_iter=max_iter,
n_jobs=n_jobs, warm_start=warm_start,)
def create_model(self,loss='log', penalty='l2', max_iter=200, n_jobs=-1,
warm_start=True, num_models=1):
self.model_list = []
for i in range(num_models):
model = SGDClassifier(loss=loss, penalty=penalty, max_iter=max_iter,
n_jobs=n_jobs, warm_start=warm_start)
model = CalibratedClassifierCV(base_estimator=model, n_jobs=n_jobs, method='isotonic')
self.model_list.append(model)
def load_model(self, model_address):
self.model_list = None
self.model = None
if type(model_address) == list:
model_list = []
for model in model_address:
model_list.append(scr.load_object(model))
self.model_list = model_list
else:
self.model = scr.load_object(model_address)
def build_data_generator(self, prot_ints_dict, pairs_list, stat_dict,batch_size=1, shuffle=True,
prot_mean_std_dict={},
x_={'default':[36.9, 40.2, 43.9, 46.6, 48.6, 52.7, 55.3, 58.5, 61.2, 64]}):
data_generator = Base_Data_Generator(prot_ints_dict, pairs_list, stat_dict,
batch_size=batch_size, shuffle=shuffle, x_=x_,
prot_mean_std_dict=prot_mean_std_dict,)
return data_generator
def predict(self, save_address, prot_ints_dict, batch_size=1, shuffle=True,
x_={'default':[36.9, 40.2, 43.9, 46.6, 48.6, 52.7, 55.3, 58.5, 61.2, 64]}):
x_ = {'default': x_}
prot_mean_std_dict, dist_dict = scr.create_prot_mean_std_dict(prot_ints_dict, ex_distance=False,
metric='euclidean',
curve_points=x_['default'])
genes_list = list(prot_ints_dict.keys())
pairs_list = list(itertools.combinations(genes_list, 2))
stat_dict = {}
stat_dict['mean'] = np.mean(list(dist_dict.values()))
stat_dict['std'] = np.std(list(dist_dict.values()))
self.data_generator = self.build_data_generator(prot_ints_dict.copy(), pairs_list,
stat_dict.copy(), batch_size=batch_size, shuffle=shuffle,
x_=x_, prot_mean_std_dict=prot_mean_std_dict.copy())
del dist_dict, prot_ints_dict, prot_mean_std_dict
num_batches = self.data_generator.__len__()
self.data_generator.on_epoch_end()
pred_dict = {}
for i in range(num_batches):
print('Batch: ' + str(i + 1) + '/' + str(num_batches))
X, list_IDs_temp = self.data_generator.__getitem__(i)
preds = self.model.predict_proba(X)
for i in range(len(preds)):
gene1_key = list_IDs_temp[i][0]
gene2_key = list_IDs_temp[i][1]
pred_dict[gene1_key, gene2_key] = preds[i][1]
scr.network_dict_to_tsv_file(pred_dict, savename=save_address)
class Extended_Model(Base_Model):
def __init__(self, model_address=None, loss='log', penalty='l2', max_iter=1000, n_jobs=-1,
warm_start=True):
super().__init__(model_address, loss, penalty, max_iter, n_jobs, warm_start)
if model_address != None:
self.load_model(model_address)
else:
self.create_model(loss=loss, penalty=penalty, max_iter=max_iter,
n_jobs=n_jobs, warm_start=warm_start)
def build_data_generator(self, prot_ints_dict, pairs_list, stat_dict, prior_dict=None, pfam_dict=None,
properties_dict=None, batch_size=1, shuffle=True, prot_mean_std_dict={},
x_={'default':[36.9, 40.2, 43.9, 46.6, 48.6, 52.7, 55.3, 58.5, 61.2, 64]}):
data_generator = Extended_Data_Generator(prot_ints_dict, pairs_list, stat_dict,
batch_size=batch_size, shuffle=shuffle, x_=x_,
prot_mean_std_dict=prot_mean_std_dict)
data_generator.other_info_init(prior_dict=prior_dict, pfam_dict=pfam_dict, properties_dict=properties_dict,)
return data_generator
def fix_curve(self, curve, shape=(1, 10)):
if len(curve) > 10:
curve = curve[0:10]
while len(curve) < 10:
curve = np.append(curve, curve[-1])
curve = np.reshape(curve, shape)
return curve
def network_dict_to_tsv_file(self, network_dict, savename='./data/test', n=2, mode='a'):
f = open(savename + '.tsv', mode)
for key, value in network_dict.items():
line = ''
skip_flag = False
for i in range(n):
gene = key[i]
if gene == None:
skip_flag = True
break
line = line + '\t' + gene
if skip_flag:
continue
line = line +'\t'+ str(value) + '\n'
f.write(line)
f.close()
def dict_cleaner(self, in_dict, relevant_keys):
del_list = []
for key in in_dict.keys():
if key not in relevant_keys:
del_list.append(key)
for key in del_list:
del in_dict[key]
return in_dict
def predict(self, save_address, prot_ints_dict,
prior_dict_address=None, go_dict_address=None, pfam_dict_address_list=None,
properties_dict_address=None, batch_size=1, shuffle=True,
x_={'default':[36.9, 40.2, 43.9, 46.6, 48.6, 52.7, 55.3, 58.5, 61.2, 64]}):
x_ = {'default':x_}
prot_mean_std_dict, dist_dict = scr.create_prot_mean_std_dict(prot_ints_dict, ex_distance=False,
metric='euclidean', curve_points=x_['default'])
genes_list = list(prot_ints_dict.keys())
pairs_list = list(itertools.combinations(genes_list, 2))
del genes_list
prior_dict = None
if prior_dict_address != '':
relevant_prots = set()
for prot in prot_ints_dict.keys():
relevant_prots.add(prot)
prior_dict = {}
prior_dict['info'] = {}
print(f"prior_dict_address: {prior_dict_address}, relevant_prots: {relevant_prots}")
prior_dict['predict'] = scr.create_tissue_dict(prior_dict_address, relevant_prots=relevant_prots)
prior_dict['info']['predict'] = 'predict'
if type(properties_dict_address) == str():
properties_dict = scr.load_object(properties_dict_address)
else:
properties_dict = {}
for prop_address in properties_dict_address:
properties_dict.update(scr.load_object(prop_address))
relevant_prots = set()
for prot in prot_ints_dict.keys():
relevant_prots.add(prot)
pfam_dict = scr.build_relevent_pfam_dict(pfam_dict_address_list)
pfam_dict = self.dict_cleaner(pfam_dict, relevant_prots)
stat_dict = {}
stat_dict['mean'] = np.mean(list(dist_dict.values()))
stat_dict['std'] = np.std(list(dist_dict.values()))
self.data_generator = self.build_data_generator(prot_ints_dict.copy(), pairs_list, stat_dict.copy(),
prior_dict=prior_dict, pfam_dict=pfam_dict,
properties_dict=properties_dict, batch_size=batch_size,
shuffle=shuffle, x_=x_,
prot_mean_std_dict=prot_mean_std_dict.copy())
del dist_dict, prot_mean_std_dict, prot_ints_dict
num_batches = self.data_generator.__len__()
self.data_generator.on_epoch_end()
pred_dict = {}
if prior_dict_address != '':
save_add_on = ['_base', '_prop', '_pfam', '_prior', '_prop_pfam', '_prior_pfam', '_prior_prop',
'_prior_prop_pfam'
]
else:
save_add_on = ['_base', '_prop', '_pfam', '_prop_pfam']
save_address = './temp/' + save_address
for i, model in enumerate(self.model_list):
f = open(save_address + save_add_on[i] + '.tsv', 'w')
f.close()
for i in range(num_batches):
print('Batch: ' + str(i + 1) + '/' + str(num_batches))
X, list_IDs_temp = self.data_generator.__getitem__(i)
if prior_dict_address != '':
save_add_on = ['_base', '_prop', '_pfam', '_prior', '_prop_pfam', '_prior_pfam', '_prior_prop',
'_prior_prop_pfam'
]
else:
save_add_on = ['_base', '_prop', '_pfam', '_prop_pfam']
for j, model in enumerate(self.model_list):
preds = model.predict_proba(X[j])
pred_dict = {}
for i in range(len(preds)):
gene1_key = list_IDs_temp[i][0]
gene2_key = list_IDs_temp[i][1]
pred_dict[gene1_key, gene2_key] = preds[i][1]
self.network_dict_to_tsv_file(pred_dict, savename=save_address + save_add_on[j], mode='a')
if self.model!= None:
scr.network_dict_to_tsv_file(pred_dict, savename=save_address)