-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate_diffusion.py
236 lines (191 loc) · 9.18 KB
/
evaluate_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import argparse
import logging
import time
import numpy as np
import torch.utils.data
from hardware.device import get_device
from inference.post_process import post_process_output
from utils.data import get_dataset
from utils.dataset_processing import evaluation, grasp
from utils.visualisation.plot import save_results
from utils.model_util import create_diffusion
import inference.models.lgdm.albef.utils as utils
logging.basicConfig(level=logging.INFO)
def parse_args():
parser = argparse.ArgumentParser(description='Evaluate networks')
# Network
parser.add_argument('--network', metavar='N', type=str, nargs='+',
help='Path to saved networks to evaluate')
parser.add_argument('--input-size', type=int, default=224,
help='Input image size for the network')
# Dataset
parser.add_argument('--dataset', type=str,
help='Dataset Name ("cornell" or "jaquard")')
parser.add_argument('--dataset-path', type=str,
help='Path to dataset')
parser.add_argument('--use-depth', type=int, default=1,
help='Use Depth image for evaluation (1/0)')
parser.add_argument('--use-rgb', type=int, default=1,
help='Use RGB image for evaluation (1/0)')
parser.add_argument('--augment', action='store_true',
help='Whether data augmentation should be applied')
parser.add_argument('--split', type=float, default=0.01,
help='Fraction of data for training (remainder is validation)')
parser.add_argument('--ds-shuffle', action='store_true', default=False,
help='Shuffle the dataset')
parser.add_argument('--ds-rotate', type=float, default=0.0,
help='Shift the start point of the dataset to use a different test/train split')
parser.add_argument('--num-workers', type=int, default=8,
help='Dataset workers')
# Evaluation
parser.add_argument('--n-grasps', type=int, default=1,
help='Number of grasps to consider per image')
parser.add_argument('--iou-threshold', type=float, default=0.25,
help='Threshold for IOU matching')
parser.add_argument('--iou-eval', action='store_true',
help='Compute success based on IoU metric.')
parser.add_argument('--jacquard-output', action='store_true',
help='Jacquard-dataset style output')
# Misc.
parser.add_argument('--vis', action='store_true',
help='Visualise the network output')
parser.add_argument('--cpu', dest='force_cpu', action='store_true', default=False,
help='Force code to run in CPU mode')
parser.add_argument('--random-seed', type=int, default=123,
help='Random seed for numpy')
parser.add_argument('--seen', type=int, default=1,
help='Flag for using seen classes, only work for Grasp-Anything dataset')
parser.add_argument('--add-file-path', type=str, default='data/grasp-anywhere',
help='Specific for Grasp-Anywhere')
args = parser.parse_args()
if args.jacquard_output and args.dataset != 'jacquard':
raise ValueError('--jacquard-output can only be used with the --dataset jacquard option.')
if args.jacquard_output and args.augment:
raise ValueError('--jacquard-output can not be used with data augmentation.')
return args
def _init_process():
class WrapperArgument:
def __init__(self):
pass
def add_attribute(self, name, value):
setattr(self, name, value)
args = WrapperArgument()
args.config = 'inference/models/lgdm/albef/configs/Grounding.yaml'
args.gradcam_mode = 'itm'
args.block_num = 8
args.text_encoder = 'bert-base-uncased'
args.device = 'cuda'
args.world_size = 1
args.dist_url = 'env://'
args.distributed = True
utils.init_distributed_mode(args)
if __name__ == '__main__':
_init_process()
args = parse_args()
# Set seed for CPU
torch.manual_seed(args.random_seed)
# Set seed for GPU if available
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.random_seed)
np.random.seed(args.random_seed)
# Get the compute device
device = get_device(args.force_cpu)
diffusion = create_diffusion()
sample_fn = (
diffusion.p_sample_loop
)
# Load Dataset
logging.info('Loading {} Dataset...'.format(args.dataset.title()))
Dataset = get_dataset(args.dataset)
test_dataset = Dataset(args.dataset_path,
output_size=args.input_size,
ds_rotate=args.ds_rotate,
random_rotate=args.augment,
random_zoom=args.augment,
include_depth=args.use_depth,
include_rgb=args.use_rgb,
seen=args.seen,
add_file_path=args.add_file_path)
indices = list(range(test_dataset.length))
split = int(np.floor(args.split * test_dataset.length))
if args.ds_shuffle:
np.random.seed(args.random_seed)
np.random.shuffle(indices)
val_indices = indices[split:]
val_sampler = torch.utils.data.sampler.SubsetRandomSampler(val_indices)
logging.info('Validation size: {}'.format(len(val_indices)))
# test_dataset = sorted(test_dataset, key=lambda x: x[5])
test_data = torch.utils.data.DataLoader(
test_dataset,
batch_size=1,
num_workers=args.num_workers,
sampler=val_sampler
)
logging.info('Done')
for network in args.network:
logging.info('\nEvaluating model {}'.format(network))
# Load Network
net = torch.load(network)
results = {'correct': 0, 'failed': 0}
if args.jacquard_output:
jo_fn = network + '_jacquard_output.txt'
with open(jo_fn, 'w') as f:
pass
start_time = time.time()
with torch.no_grad():
for idx, (x, y, didx, rot, zoom, prompt, query) in enumerate(test_data):
img = x.to(device)
yc = [yi.to(device) for yi in y]
pos_gt = yc[0]
alpha = 0.4
idx = torch.zeros(img.shape[0]).to(device)
sample = sample_fn(
net,
pos_gt.shape,
pos_gt,
img,
query,
alpha,
idx,
)
pos_output = sample
cos_output, sin_output, width_output = net.cos_output_str, net.sin_output_str, net.width_output_str
# pos_output, cos_output, sin_output, width_output = net(None, img, None, query, alpha, idx)
lossd = net.compute_loss(yc, pos_output, cos_output, sin_output, width_output)
q_img, ang_img, width_img = post_process_output(lossd['pred']['pos'], lossd['pred']['cos'],
lossd['pred']['sin'], lossd['pred']['width'])
if args.iou_eval:
s = evaluation.calculate_iou_match(q_img, ang_img, test_data.dataset.get_gtbb(didx, rot, zoom),
no_grasps=args.n_grasps,
grasp_width=width_img,
threshold=args.iou_threshold
)
if s:
results['correct'] += 1
else:
results['failed'] += 1
if args.jacquard_output:
grasps = grasp.detect_grasps(q_img, ang_img, width_img=width_img, no_grasps=1)
with open(jo_fn, 'a') as f:
for g in grasps:
f.write(test_data.dataset.get_jname(didx) + '\n')
f.write(g.to_jacquard(scale=1024 / 300) + '\n')
if args.vis:
save_results(
rgb_img=test_data.dataset.get_rgb(didx, rot, zoom, normalise=False),
depth_img=test_data.dataset.get_depth(didx, rot, zoom),
grasp_q_img=q_img,
grasp_angle_img=ang_img,
no_grasps=args.n_grasps,
grasp_width_img=width_img
)
avg_time = (time.time() - start_time) / len(test_data)
logging.info('Average evaluation time per image: {}ms'.format(avg_time * 1000))
if args.iou_eval:
logging.info('IOU Results: %d/%d = %f' % (results['correct'],
results['correct'] + results['failed'],
results['correct'] / (results['correct'] + results['failed'])))
if args.jacquard_output:
logging.info('Jacquard output saved to {}'.format(jo_fn))
del net
torch.cuda.empty_cache()