-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathsearch.js
61 lines (57 loc) · 1.54 KB
/
search.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import 'dotenv/config'
import { Document } from 'langchain/document'
import { MemoryVectorStore } from 'langchain/vectorstores/memory'
import { OpenAIEmbeddings } from 'langchain/embeddings/openai'
const movies = [
{
id: 1,
title: 'Stepbrother',
description: `Comedic journey full of adult humor and awkwardness.`,
},
{
id: 2,
title: 'The Matrix',
description: `Deals with alternate realities and questioning what's real.`,
},
{
id: 3,
title: 'Shutter Island',
description: `A mind-bending plot with twists and turns.`,
},
{
id: 4,
title: 'Memento',
description: `A non-linear narrative that challenges the viewer's perception.`,
},
{
id: 5,
title: 'Doctor Strange',
description: `Features alternate dimensions and reality manipulation.`,
},
{
id: 6,
title: 'Paw Patrol',
description: `Children's animated movie where a group of adorable puppies save people from all sorts of emergencies.`,
},
{
id: 7,
title: 'Interstellar',
description: `Features futuristic space travel with high stakes`,
},
]
const createStore = () =>
MemoryVectorStore.fromDocuments(
movies.map(
(movie) =>
new Document({
pageContent: `Title: ${movie.title}\n${movie.description}`,
metadata: { source: movie.id, title: movie.title },
})
),
new OpenAIEmbeddings()
)
export const search = async (query, count = 1) => {
const store = await createStore()
return store.similaritySearch(query, count)
}
console.log(await search(''))