-
Notifications
You must be signed in to change notification settings - Fork 2
/
ecohydrology_model_functions.py
418 lines (382 loc) · 19 KB
/
ecohydrology_model_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# -*- coding: utf-8 -*-
"""
"""
# Authors: Sai Nudurupati & Erkan Istanbulluoglu, 21May15
# Edited: 15Jul16 - to conform to Landlab version 1.
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from landlab.plot import imshow_grid
from landlab import RasterModelGrid as rmg
from landlab.components import (PrecipitationDistribution, Radiation,
PotentialEvapotranspiration)
from soil_moisture_dynamics_lb_pap import SoilMoisture
from vegetation_dynamics_lb_pap import Vegetation
from plant_competition_ca_lb_pap import VegCA
from landlab import load_params
GRASS = 0
SHRUB = 1
TREE = 2
BARE = 3
SHRUBSEEDLING = 4
TREESEEDLING = 5
# Function to compose spatially distribute PFT
def compose_veg_grid(grid, percent_bare=0.4, percent_grass=0.2,
percent_shrub=0.2, percent_tree=0.2):
number_cells = grid.number_of_cells
V = 3 * np.ones(grid.number_of_cells, dtype=int)
shrub_point = int(percent_bare * number_cells)
tree_point = int((percent_bare + percent_shrub) * number_cells)
grass_point = int((1 - percent_grass) * number_cells)
V[shrub_point:tree_point] = 1
V[tree_point:grass_point] = 2
V[grass_point:] = 0
np.random.shuffle(V)
return V
def initialize_components(data, grid_veg=None, grid=None, pet_method='Cosine'):
# Plant types are defined as following:
# GRASS = 0; SHRUB = 1; TREE = 2; BARE = 3;
# SHRUBSEEDLING = 4; TREESEEDLING = 5
# Initialize random plant type field
grid.at_cell['vegetation__plant_functional_type'] = compose_veg_grid(
grid, percent_bare=data['percent_bare_initial'],
percent_grass=data['percent_grass_initial'],
percent_shrub=data['percent_shrub_initial'],
percent_tree=data['percent_tree_initial'])
# Assign plant type for representative ecohydrologic simulations
grid_veg.at_cell['vegetation__plant_functional_type'] = np.arange(0, 6)
grid.at_node['topographic__elevation'] = np.full(grid.number_of_nodes,
1700.)
grid_veg.at_node['topographic__elevation'] = np.full(
grid_veg.number_of_nodes, 1700.)
precip_dry = PrecipitationDistribution(
mean_storm_duration=data['mean_storm_dry'],
mean_interstorm_duration=data['mean_interstorm_dry'],
mean_storm_depth=data['mean_storm_depth_dry'],
random_seed=None)
precip_wet = PrecipitationDistribution(
mean_storm_duration=data['mean_storm_wet'],
mean_interstorm_duration=data['mean_interstorm_wet'],
mean_storm_depth=data['mean_storm_depth_wet'],
random_seed=None)
radiation = Radiation(grid_veg)
if pet_method=='Cosine':
pet_tree = PotentialEvapotranspiration(
grid_veg, method=data['PET_method'],
MeanTmaxF=data['MeanTmaxF_tree'],
delta_d=data['DeltaD'])
pet_shrub = PotentialEvapotranspiration(
grid_veg, method=data['PET_method'],
MeanTmaxF=data['MeanTmaxF_shrub'],
delta_d=data['DeltaD'])
pet_grass = PotentialEvapotranspiration(
grid_veg, method=data['PET_method'],
MeanTmaxF=data['MeanTmaxF_grass'],
delta_d=data['DeltaD'])
elif pet_method=='PriestleyTaylor':
pet_met = PotentialEvapotranspiration(grid_veg,
method='PriestleyTaylor')
soil_moisture = SoilMoisture(grid_veg, **data) # Soil Moisture object
vegetation = Vegetation(grid_veg, **data) # Vegetation object
vegca = VegCA(grid, **data) # Cellular automaton object
# # Initializing inputs for Soil Moisture object
grid_veg.at_cell['vegetation__live_leaf_area_index'] = (
1.6 * np.ones(grid_veg.number_of_cells))
grid_veg.at_cell['soil_moisture__initial_saturation_fraction'] = (
0.59 * np.ones(grid_veg.number_of_cells))
# Initializing Soil Moisture
if pet_method=='Cosine':
return (precip_dry, precip_wet, radiation, pet_tree, pet_shrub,
pet_grass, soil_moisture, vegetation, vegca)
elif pet_method=='PriestleyTaylor':
return (precip_dry, precip_wet, radiation, pet_met, soil_moisture,
vegetation, vegca)
def create_empty_arrays(number_of_storms, grid_veg, grid, pet_method='Cosine'):
P = np.empty(number_of_storms) # Record precipitation
Tb = np.empty(number_of_storms) # Record inter storm duration
Tr = np.empty(number_of_storms) # Record storm duration
Time = np.empty(number_of_storms) # To record time elapsed from the start of simulation
# CumWaterStress = np.empty([n/55, grid.number_of_cells])
# Cum Water Stress
VegType = np.empty([int(number_of_storms/55), grid.number_of_cells], dtype=int)
if pet_method=='Cosine':
pet_arr = np.zeros([365, grid_veg.number_of_cells])
elif pet_method=='PriestleyTaylor':
pet_arr = np.zeros([number_of_storms, grid_veg.number_of_cells])
Rad_Factor = np.empty([365, grid_veg.number_of_cells])
EP30 = np.empty([365, grid_veg.number_of_cells])
Rad_Factor_met = np.empty([number_of_storms, grid_veg.number_of_cells])
EP30_met = np.empty([number_of_storms, grid_veg.number_of_cells])
# 30 day average PET to determine season
pet_threshold = 0 # Initializing PET_threshold to ETThresholddown
return (P, Tb, Tr, Time, VegType, pet_arr, Rad_Factor,
Rad_Factor_met, EP30, EP30_met, pet_threshold)
def create_pet_lookup(grid_veg, radiation=None, Rad_Factor=None,
EP30=None, pet_tree=None, pet_shrub=None,
pet_grass=None, pet_arr=None,
Rad_Factor_met=None, number_of_storms=None,
pet_met=None, Tmax_met=None, Tmin_met=None,
EP30_met=None, first_day=0, pet_method='Cosine'):
if pet_method=='Cosine':
for i in range(0, 365):
pet_tree.update(float(i)/365.25)
pet_shrub.update(float(i)/365.25)
pet_grass.update(float(i)/365.25)
pet_arr[i] = [pet_grass._PET_value, pet_shrub._PET_value,
pet_tree._PET_value, 0., pet_shrub._PET_value,
pet_tree._PET_value]
radiation.update(float(i)/365.25)
Rad_Factor[i] = (
grid_veg.at_cell['radiation__ratio_to_flat_surface'])
if i < 30:
if i == 0:
EP30[0] = pet_arr[0]
else:
EP30[i] = np.mean(pet_arr[:i], axis=0)
else:
EP30[i] = np.mean(pet_arr[i-30:i], axis=0)
return (pet_arr, EP30)
elif pet_method=='PriestleyTaylor':
for i in range(0, number_of_storms):
pet_met.update(float(first_day+i)/365.25, Tmax = Tmax_met[i],
Tmin = Tmin_met[i],
Tavg = (Tmax_met[i]+Tmin_met[i])/2.)
pet_arr[i] = [pet_met._PET_value, pet_met._PET_value,
pet_met._PET_value, 0., pet_met._PET_value,
pet_met._PET_value]
radiation.update(float(i)/365.25)
Rad_Factor_met[i] = (
grid_veg.at_cell['radiation__ratio_to_flat_surface'])
if i < 30:
if i == 0:
EP30_met[0] = pet_arr[0]
else:
EP30_met[i] = np.mean(pet_arr[:i], axis=0)
else:
EP30_met[i] = np.mean(pet_arr[i-30:i], axis=0)
return(pet_arr, EP30_met)
def save_data(sim, Tb, Tr, P, VegType, yrs, Time_Consumed, Time):
np.save(sim+'Tb', Tb)
np.save(sim+'Tr', Tr)
np.save(sim+'P', P)
np.save(sim+'VegType', VegType)
# np.save(sim+'CumWaterStress', CumWaterStress)
np.save(sim+'Years', yrs)
np.save(sim+'Time_Consumed_minutes', Time_Consumed)
np.save(sim+'CurrentTime', Time)
def plot_results(grid, VegType, yrs, yr_step=10):
# # Plotting
pic = 0
years = range(0, yrs)
cmap = mpl.colors.ListedColormap(
['green', 'red', 'black', 'white', 'red', 'black'])
bounds = [-0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
print('Plotting cellular field of Plant Functional Type')
print('Green - Grass; Red - Shrubs; Black - Trees; White - Bare')
# # Plot images to make gif.
for year in range(0, yrs, yr_step):
filename = 'Year = ' + "%05d" % year
pic += 1
plt.figure(pic)
imshow_grid(grid, VegType[year], values_at='cell', cmap=cmap,
grid_units=('m', 'm'), norm=norm, limits=[0, 5],
allow_colorbar=False)
plt.title(filename)
plt.savefig(filename)
grass_cov = np.empty(yrs)
shrub_cov = np.empty(yrs)
tree_cov = np.empty(yrs)
grid_size = float(VegType.shape[1])
for x in range(0, yrs):
grass_cov[x] = (VegType[x][VegType[x] == GRASS].size/grid_size) * 100
shrub_cov[x] = ((VegType[x][VegType[x] == SHRUB].size/grid_size) *
100 + (VegType[x][VegType[x] == SHRUBSEEDLING].size /
grid_size) * 100)
tree_cov[x] = ((VegType[x][VegType[x] == TREE].size/grid_size) *
100 + (VegType[x][VegType[x] == TREESEEDLING].size /
grid_size) * 100)
pic += 1
plt.figure(pic)
plt.plot(years, grass_cov, '-g', label='Grass')
plt.plot(years, shrub_cov, '-r', label='Shrub')
plt.plot(years, tree_cov, '-k', label='Tree')
plt.xlim(xmin=0, xmax=years[-1])
plt.ylim(ymin=0, ymax=(max(np.max(grass_cov),
np.max(shrub_cov),
np.max(tree_cov))+10))
plt.ylabel(' % Coverage ')
plt.xlabel('Time in years')
plt.legend(loc=0)
plt.savefig('PercentageCover_PFTs')
# plt.show()
def run_ecohydrology_model(grid, input_data, input_file,
synthetic_storms=True, number_of_storms=None,
number_of_years=None,
first_julian_day_of_observations=0,
pet_method='Cosine',
save_files=False, sim_name='Trial'):
# Create data object by reading in the input_file
data = load_params(input_file)
# Create a grid that can hold enough cells to represent all individual
# vegetation types
grid_veg = rmg((5, 4), spacing=(5., 5.))
if pet_method == 'Cosine':
(precip_dry, precip_wet, radiation, pet_tree, pet_shrub, pet_grass,
soil_moisture, vegetation, vegca) = initialize_components(data,
grid_veg, grid, pet_method='Cosine')
elif pet_method == 'PriestleyTaylor':
(precip_dry, precip_wet, radiation, pet_met,
soil_moisture, vegetation, vegca) = initialize_components(data,
grid_veg, grid, pet_method='PriestleyTaylor')
if number_of_years!=None:
# Calculate approximate number of storms per year
fraction_wet = ((data['doy__end_of_monsoon']-
data['doy__start_of_monsoon'])/365.)
fraction_dry = (1 - fraction_wet)
number_of_storms_wet = (8760 * (fraction_wet)/
(data['mean_interstorm_wet'] +
data['mean_storm_wet']))
number_of_storms_dry = (8760 * (fraction_dry)/
(data['mean_interstorm_dry'] +
data['mean_storm_dry']))
number_of_storms = int(number_of_years *
(number_of_storms_wet + number_of_storms_dry))
(precip, inter_storm_dt, storm_dt, Time, VegType, pet_arr, Rad_Factor,
Rad_Factor_met, EP30, EP30_met, pet_threshold) = create_empty_arrays(
number_of_storms,
grid_veg, grid,
pet_method=pet_method)
if pet_method == 'Cosine':
(pet_arr, EP30) = create_pet_lookup(grid_veg, radiation=radiation, Rad_Factor=Rad_Factor,
EP30=EP30, pet_tree=pet_tree, pet_shrub=pet_shrub,
pet_grass=pet_grass, pet_arr=pet_arr)
if pet_method == 'PriestleyTaylor':
(pet_arr, EP30_met) = create_pet_lookup(grid_veg, radiation=radiation,
Rad_Factor_met=Rad_Factor_met,
number_of_storms=number_of_storms,
pet_met=pet_met, Tmax_met=input_data['Tmax_met'],
Tmin_met=input_data['Tmin_met'], EP30_met=EP30_met,
first_day=first_julian_day_of_observations,
pet_method=pet_method, pet_arr=pet_arr)
# declaring few variables that will be used in the storm loop
current_time = first_julian_day_of_observations/365.25 # Initial time
time_check = 0. # Buffer to store current_time at previous storm
yrs = 0 # Keep track of number of years passed
water_stress = 0. # Buffer for Water Stress
Tg = 0 # Growing season in days
# # Run storm Loop
for i in range(0, number_of_storms):
# Update objects
# Calculate Day of Year (DOY)
julian = np.int(np.floor((current_time - np.floor(current_time)) *
365.))
if synthetic_storms:
# Generate seasonal storms
# for Dry season
if julian < data['doy__start_of_monsoon'] or julian > data[
'doy__end_of_monsoon']:
precip_dry.update()
precip[i] = precip_dry.storm_depth
storm_dt[i] = precip_dry.storm_duration
inter_storm_dt[i] = precip_dry.interstorm_duration
# Wet Season - Jul to Sep - NA Monsoon
else:
precip_wet.update()
precip[i] = precip_wet.storm_depth
storm_dt[i] = precip_wet.storm_duration
inter_storm_dt[i] = precip_wet.interstorm_duration
else:
precip[i] = input_data['precip_met'][i]
storm_dt[i] = 0.
inter_storm_dt[i] = 24.
# Spatially distribute PET and its 30-day-mean (analogous to degree day)
if pet_method == 'Cosine':
grid_veg.at_cell['surface__potential_evapotranspiration_rate'] = (
pet_arr[julian])
grid_veg.at_cell['surface__potential_evapotranspiration_30day_mean'] = (
EP30[julian])
grid_veg.at_cell['surface__potential_evapotranspiration_rate__grass'] = (
np.full(grid_veg.number_of_cells, pet_arr[julian, 0]))
elif pet_method=='PriestleyTaylor':
grid_veg.at_cell['surface__potential_evapotranspiration_rate'] = (
pet_arr[i])
grid_veg.at_cell['surface__potential_evapotranspiration_30day_mean'] = (
EP30_met[i])
grid_veg.at_cell['surface__potential_evapotranspiration_rate__grass'] = (
np.full(grid_veg.number_of_cells, pet_arr[i, 0]))
# Assign spatial rainfall data
grid_veg.at_cell['rainfall__daily_depth'] = (
np.full(grid_veg.number_of_cells, precip[i]))
# Update soil moisture component
current_time = soil_moisture.update(current_time, Tr=storm_dt[i],
Tb=inter_storm_dt[i])
# Decide whether its growing season or not
if pet_method == 'Cosine':
if julian != 364:
if EP30[julian+1, 0] > EP30[julian, 0]:
pet_threshold = 1
# 1 corresponds to ETThresholdup (begin growing season)
if EP30[julian, 0] > vegetation._ETthresholdup:
growing_season = True
else:
growing_season = False
else:
pet_threshold = 0
# 0 corresponds to ETThresholddown (end growing season)
if EP30[julian, 0] > vegetation._ETthresholddown:
growing_season = True
else:
growing_season = False
elif pet_method=='PriestleyTaylor':
if i != number_of_storms-1:
if EP30_met[i+1, 0] > EP30_met[i, 0]:
pet_threshold = 1
# 1 corresponds to ETThresholdup (begin growing season)
if EP30_met[i, 0] > vegetation._ETthresholdup:
growing_season = True
else:
growing_season = False
else:
pet_threshold = 0
# 0 corresponds to ETThresholddown (end growing season)
if EP30_met[i, 0] > vegetation._ETthresholddown:
growing_season = True
else:
growing_season = False
# Update vegetation component
vegetation.update(PETThreshold_switch=pet_threshold,
Tb=inter_storm_dt[i], Tr=storm_dt[i])
if growing_season:
# Update yearly cumulative water stress data
Tg += (storm_dt[i]+inter_storm_dt[i])/24. # Incrementing growing season storm count
water_stress += ((grid_veg.at_cell['vegetation__water_stress']) *
inter_storm_dt[i]/24.)
# Record time (optional)
Time[i] = current_time
# Update spatial PFTs with Cellular Automata rules
if (current_time - time_check) >= 1.:
if yrs % 100 == 0:
print('Elapsed time = ', yrs, ' years')
VegType[yrs] = grid.at_cell['vegetation__plant_functional_type']
WS_ = np.choose(VegType[yrs], water_stress)
grid.at_cell['vegetation__cumulative_water_stress'] = WS_/Tg
vegca.update()
time_check = np.floor(current_time)
water_stress = 0
yrs += 1
Tg = 0
VegType[yrs] = grid.at_cell['vegetation__plant_functional_type']
if save_files:
save_data(sim_name, inter_storm_dt, storm_dt, precip,
VegType, yrs, 0, Time)
if pet_method == 'Cosine':
returns_debug = [grid_veg, precip_dry, precip_wet,
radiation, pet_tree, pet_shrub,
pet_grass, soil_moisture, vegetation,
vegca]
elif pet_method == 'PriestleyTaylor':
returns_debug = [grid_veg, precip_dry, precip_wet,
radiation, pet_met, soil_moisture,
vegetation, vegca]
return (VegType, yrs-1, returns_debug)