-
Notifications
You must be signed in to change notification settings - Fork 129
/
Copy pathFinal.py
66 lines (53 loc) · 2.49 KB
/
Final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 8 21:22:45 2014
@author: francesco
"""
import functions
import datetime
def final():
target = 'CLASSIFICATION'
lags = range(2, 3)
print 'Maximum time lag applied', max(lags)
start = datetime.datetime(1990, 1, 1)
end = datetime.datetime(2014, 8, 31)
out = functions.getStock('GE', start, end)
datasets = functions.loadDatasets('/home/francesco/Dropbox/DSR/StocksProject/longdatasets')
datasets.insert(0, out)
delta = range(2, 5)
print 'Max Delta days accounted: ', max(delta)
for dataset in datasets:
columns = dataset.columns
adjclose = columns[-2]
returns = columns[-1]
for n in delta:
functions.addFeatures(dataset, adjclose, returns, n)
#dataset = dataset.iloc[max(delta):,:]
finance = functions.mergeDataframes(datasets, 6, target)
#finance = finance.ix[max(delta):]
print 'Size of data frame: ', finance.shape
print 'Number of NaN after merging: ', functions.count_missing(finance)
print '% of NaN after merging: ', (functions.count_missing(finance)/float(finance.shape[0]*finance.shape[1]))*100, '%'
finance = finance.interpolate(method = 'time')
print 'Number of NaN after time interpolation: ', functions.count_missing(finance)
finance = finance.fillna(finance.mean())
print 'Number of NaN after mean interpolation: ', functions.count_missing(finance)
back = -1
#finance.Return_SP500 = finance.Return_SP500.shift(back)
finance.Return_Out = finance.Return_Out.shift(back)
finance = functions.applyTimeLag(finance, lags, delta, back, target)
#finance = functions.mergeSentimenToStocks(finance)
#print finance.columns
print 'Number of NaN after temporal shifting: ', functions.count_missing(finance)
print 'Size of data frame after feature creation: ', finance.shape
if target == 'CLASSIFICATION':
start_test = datetime.datetime(2014,4,1)
X_train, y_train, X_test, y_test = functions.prepareDataForClassification(finance, start_test)
print ''
#print 'Performing CV...'
#grid = {'n_estimators': [80, 100, 150], 'learning_rate': [0.01, 0.1, 1, 10]}
#grid = {'n_estimators': [50, 80, 100, 1000]}
#functions.performTimeSeriesSearchGrid(finance, 4, 0.8, features, 'ADA', grid)
print functions.performClassification(X_train, y_train, X_test, y_test, 'RF', [])
if __name__ == "__main__":
final()