diff --git a/test/conv.jl b/test/conv.jl index 8edc4bf24..3c4bac0a7 100644 --- a/test/conv.jl +++ b/test/conv.jl @@ -407,47 +407,46 @@ ddims(x) = dropdims(x, dims=(ndims(x)-1, ndims(x))) ) #α, β = 2*rand(rng) - 1, 2*rand(rng) - 1 α, β = 2e0, -1e0 - flag = ∇conv_data! in (NNlib.∇conv_data!, NNlib.∇conv_data_im2col!) @testset "$(∇conv_filter!)/$(∇conv_data!)" begin # First, your basic convolution with no parameters cdims = DenseConvDims(x, w) dy = NNlib.conv(x, w, cdims) @test isapprox(ddims(∇conv_filter!(copy(w), x, dy, cdims; alpha=α, beta=β)), α*dw + β*w, rtol = 1.0e-7) - @test isapprox(ddims(∇conv_data!(copy(x), dy, w, cdims; alpha=α, beta=β)), α*dx + β*x, rtol = 1.0e-7) broken=flag + @test isapprox(ddims(∇conv_data!(copy(x), dy, w, cdims; alpha=α, beta=β)), α*dx + β*x, rtol = 1.0e-7) # Next, test convolution on views and alternate datatypes: @test isapprox(ddims(∇conv_filter!(copy(w), x, view(dy, repeat([:], ndims(dy))...), cdims; alpha=α, beta=β)), α*dw + β*w, rtol = 1.0e-7) - @test isapprox(ddims(∇conv_data!(copy(x), view(dy, repeat([:], ndims(dy))...), w, cdims; alpha=α, beta=β)), α*dx + β*x, rtol = 1.0e-7) broken=flag + @test isapprox(ddims(∇conv_data!(copy(x), view(dy, repeat([:], ndims(dy))...), w, cdims; alpha=α, beta=β)), α*dx + β*x, rtol = 1.0e-7) @test isapprox(ddims(∇conv_filter!(Float32.(copy(w)), Float32.(x), Float32.(dy), cdims; alpha=Float32(α), beta=Float32(β))), α*dw + β*w, rtol = 1.0e-7) - @test isapprox(ddims(∇conv_data!(Float32.(copy(x)), Float32.(dy), Float32.(w), cdims; alpha=Float32(α), beta=Float32(β))), α*dx + β*x, rtol = 1.0e-7) broken=flag + @test isapprox(ddims(∇conv_data!(Float32.(copy(x)), Float32.(dy), Float32.(w), cdims; alpha=Float32(α), beta=Float32(β))), α*dx + β*x, rtol = 1.0e-7) # Next, introduce stride: cdims = DenseConvDims(x, w; stride=2) dy = NNlib.conv(x, w, cdims) flag_ = ∇conv_filter! == NNlib.∇conv_filter_direct! && rank in (1,3) @test isapprox(ddims(∇conv_filter!(copy(w), x, dy, cdims; alpha=α, beta=β)), α*dw_stride + β*w, rtol = 1.0e-7) broken=flag_ - @test isapprox(ddims(∇conv_data!(copy(x), dy, w, cdims; alpha=α, beta=β)), α*dx_stride + β*x, rtol = 1.0e-7) broken=flag + @test isapprox(ddims(∇conv_data!(copy(x), dy, w, cdims; alpha=α, beta=β)), α*dx_stride + β*x, rtol = 1.0e-7) # Next, introduce dilation: cdims = DenseConvDims(x, w; dilation=2) dy = NNlib.conv(x, w, cdims) flag_ = ∇conv_data! == NNlib.∇conv_data_direct! && rank == 3 @test isapprox(ddims(∇conv_filter!(copy(w), x, dy, cdims; alpha=α, beta=β)), α*dw_dil + β*w, rtol = 1.0e-7) - @test isapprox(ddims(∇conv_data!(copy(x), dy, w, cdims; alpha=α, beta=β)), α*dx_dil + β*x, rtol = 1.0e-7) broken=flag || flag_ + @test isapprox(ddims(∇conv_data!(copy(x), dy, w, cdims; alpha=α, beta=β)), α*dx_dil + β*x, rtol = 1.0e-7) broken=flag_ # Next, introduce padding: cdims = DenseConvDims(x, w; padding=1) dy = NNlib.conv(x, w, cdims) @test isapprox(ddims(∇conv_filter!(copy(w), x, dy, cdims; alpha=α, beta=β)), α*dw_pad + β*w, rtol = 1.0e-7) - @test isapprox(ddims(∇conv_data!(copy(x), dy, w, cdims; alpha=α, beta=β)), α*dx_pad + β*x, rtol = 1.0e-7) broken=flag + @test isapprox(ddims(∇conv_data!(copy(x), dy, w, cdims; alpha=α, beta=β)), α*dx_pad + β*x, rtol = 1.0e-7) # Next, test crosscor/conv with a flipped kernel cdims = DenseConvDims(x, w; flipkernel=true) dy = NNlib.conv(x, w, cdims) @test isapprox(ddims(∇conv_filter!(copy(w), x, dy, cdims; alpha=α, beta=β)), α*dw_flip + β*w, rtol = 1.0e-7) - @test isapprox(ddims(∇conv_data!(copy(x), dy, w, cdims; alpha=α, beta=β)), α*dx_flip + β*x, rtol = 1.0e-7) broken=flag + @test isapprox(ddims(∇conv_data!(copy(x), dy, w, cdims; alpha=α, beta=β)), α*dx_flip + β*x, rtol = 1.0e-7) end end end