-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxstar.py
385 lines (315 loc) · 14.5 KB
/
xstar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#encoding: utf-8
from __future__ import unicode_literals
import numpy as np
import scipy.spatial.distance as ssd
from scikits.learn.base import BaseEstimator
##################
#MODEL
##################
class UserNotFoundError(Exception):
pass
class DataModel(object):
def __init__(self, dataset):
self.dataset = dataset
self.build_model()
def __getitem__(self, user_id):
return self.preferences_from_user(user_id)
def __iter__(self):
for index, user in enumerate(self.user_ids()):
yield user, self[user]
def __len__(self):
return self.index.shape
def build_model(self):
self._user_ids = np.asanyarray(self.dataset.keys())
self._user_ids.sort()
self._item_ids = []
for item in self.dataset.itervalues():
self._item_ids.extend(item.keys())
self._item_ids = np.unique(np.array(self._item_ids))
self._item_ids.sort()
self.max_pref = -np.inf
self.min_pref = np.inf
self.index = np.empty(shape=(self._user_ids.size, self._item_ids.size))
for user_num, user_id in enumerate(self._user_ids):
for item_num, item_id in enumerate(self._item_ids):
r = self.dataset[user_id].get(item_id, np.NaN)
self.index[user_num, item_num] = r
if self.index.size:
self.max_pref = np.nanmax(self.index)
self.min_pref = np.nanmin(self.index)
def user_ids(self):
return self._user_ids
def item_ids(self):
return self._item_ids
def preference_values_from_user(self, user_id):
user_id_loc = np.where(self._user_ids == user_id)
if not user_id_loc[0].size:
raise UserNotFoundError
preferences = self.index[user_id_loc]
return preferences
def preferences_from_user(self, user_id, order_by_id=True):
preferences = self.preference_values_from_user(user_id)
data = zip(self._item_ids, preferences.flatten())
if order_by_id:
return [(item_id, preference) for item_id, preference in data \
if not np.isnan(preference)]
else:
return sorted([(item_id, preference) for item_id, preference in data \
if not isnan(preference)], key=lambda item: - item[1])
def has_preference_values(self):
return True
def maximum_preference_value(self):
return self.max_pref
def minimum_preference_value(self):
return self.min_pref
def users_count(self):
return self._user_ids.size
def items_count(self):
return self._item_ids.size
def items_from_user(self, user_id):
preferences = self.preferences_from_user(user_id)
return [key for key, value in preferences]
def preferences_for_item(self, item_id, order_by_id=True):
item_id_loc = np.where(self._item_ids == item_id)
if not item_id_loc[0].size:
raise ItemNotFoundError('Item not Found')
preferences = self.index[:, item_id_loc]
data = zip(self._user_ids, preferences.flatten())
if order_by_id:
return [(user_id, preference) for user_id, preference in data\
if not np.isnan(preference)]
else:
return sorted([(user_id, preference) for user_id, preference in data \
if not np.isnan(preference)], key=lambda user: - user[1])
def preference_value(self, user_id, item_id):
item_id_loc = np.where(self._item_ids == item_id)
user_id_loc = np.where(self._user_ids == user_id)
if not user_id_loc[0].size:
raise UserNotFoundError('user_id in the model not found')
if not item_id_loc[0].size:
raise ItemNotFoundError('item_id in the model not found')
return self.index[user_id_loc, item_id_loc].flatten()[0]
def set_preference(self, user_id, item_id, value):
user_id_loc = np.where(self._user_ids == user_id)
if not user_id_loc[0].size:
raise UserNotFoundError('user_id in the model not found')
def remove_preference(self, user_id, item_id):
user_id_loc = np.where(self._user_ids == user_id)
item_id_loc = np.where(self._item_ids == item_id)
if not user_id_loc[0].size:
raise UserNotFoundError('user_id in the model not found')
if not item_id_loc[0].size:
raise ItemNotFoundError('item_id in the model not found')
del self.dataset[user_id][item_id]
self.build_model()
def __repr__(self):
return '<MatrixPreferenceDataModel (%d by %d)>' % (self.index.shape[0],
self.index.shape[1])
def _repr_matrix(self, matrix):
s = ''
cell_width = 11
shape = matrix.shape
for i in range(shape[0]):
for j in range(shape[1]):
v = matrix[i, j]
if np.isnan(v):
s += '---'.center(cell_width)
else:
exp = np.log(abs(v))
if abs(exp) <= 4:
if exp < 0:
s += ('%9.6f' % v).ljust(cell_width)
else:
s += ('%9.*f' % (6, v)).ljust(cell_width)
else:
s += ('%9.2e' % v).ljust(cell_width)
s += '\n'
return s[:-1]
def __unicode__(self):
matrix = self._repr_matrix(self.index[:20, :5])
lines = matrix.split('\n')
headers = [repr(self)[1:-1]]
if self._item_ids.size:
col_headers = [('%-8s' % unicode(item)[:8]) for item in self._item_ids[:5]]
headers.append(' ' + (' '.join(col_headers)))
if self._user_ids.size:
for (i, line) in enumerate(lines):
lines[i] = ('%-8s' % unicode(self._user_ids[i])[:8]) + line
for (i, line) in enumerate(headers):
if i > 0:
headers[i] = ' ' * 8 + line
lines = headers + lines
if self.index.shape[1] > 5 and self.index.shape[0] > 0:
lines[1] += '...'
if self.index.shape[0] > 20:
lines.append('...')
return '\n'.join(line.rstrip() for line in lines)
def __str__(self):
return unicode(self).encode('utf-8')
##################
#DISTANCE
##################
def euclidean_distances(X, Y, squared=False, inverse=True):
if X is Y:
X = Y = np.asanyarray(X)
else:
X = np.asanyarray(X)
Y = np.asanyarray(Y)
if X.shape[1] != Y.shape[1]:
raise ValueError("Incompatible dimension for X and Y metrics")
if squared:
return ssd.cdist(X, Y, 'sqeuclidean')
XY = ssd.cdist(X, Y)
return np.divide(1.0, (1.0+XY)) if inverse else XY
euclidean_distances = euclidean_distances
def pearson_correlation(X, Y):
if X is Y:
X = Y = np.asanyarray(X)
else:
X = np.asanyarray(X)
Y = np.asanyarray(Y)
if X.shape[1] != Y.shape[1]:
raise ValueError("Incompatible dimension for X and Y metrics")
XY = ssd.cdist(X, Y, 'correlation', 2)
return 1 - XY
##################
#SIMILARITY
##################
def find_common_elements(source_preferences, target_preferences):
src = dict(source_preferences)
tgt = dict(target_preferences)
inter = np.intersect1d(src.keys(), tgt.keys())
common_preferences = zip(*[(src[item], tgt[item]) for item in inter \
if not np.isnan(src[item]) and not np.isnan(tgt[item])])
if common_preferences:
return np.asarray([common_preferences[0]]), np.asarray([common_preferences[1]])
else:
return np.asarray([[]]), np.asarray([[]])
class UserSimilarity(object):
def __init__(self, model, distance, num_best=None, number=None):
self.model = model
self.distance = distance
self.num_best = num_best
self.number = number
def get_similarity(self, source_id, target_id):
source_preferences = self.model.preferences_from_user(source_id)
target_preferences = self.model.preferences_from_user(target_id)
if self.model.has_preference_values():
source_preferences, target_preferences = \
find_common_elements(source_preferences, target_preferences)
if source_preferences.ndim == 1 and target_preferences.ndim == 1:
source_preferences = np.asarray([source_preferences])
target_preferences = np.asarray([target_preferences])
return self.distance(source_preferences, target_preferences) \
if not source_preferences.shape[1] == 0 \
and not target_preferences.shape[1] == 0 else np.array([[np.nan]])
def get_similarities(self, source_id):
return[(other_id, self.get_similarity(source_id, other_id)) for other_id, v in self.model]
def __iter__(self):
for source_id, preferences in self.model:
yield source_id, self[source_id]
def __getitem__(self, source_id):
similar_items = self.get_similarities(source_id)
tops = sorted(similar_items, key=lambda x: -x[1])
if similar_items:
item_ids, preferences = zip(*similar_items)
preferences = np.array(preferences).flatten()
item_ids = np.array(item_ids).flatten()
sorted_prefs = np.argsort(-preferences)
tops = zip(item_ids[sorted_prefs], preferences[sorted_prefs])
return tops[:self.num_best] if self.num_best is not None else tops
##################
#KNN
##################
class NearestNeighbors(object):
def __init__(self):
self.similarity = None
def _sampling(self, data_model, sampling_rate):
return data_model
def _set_similarity(self, data_model, similarity, distance, nhood_size):
if not isinstance(self.similarity, UserSimilarity) or not distance == self.similarity.distance:
nhood_size = nhood_size if not nhood_size else nhood_size + 1
self.similarity = UserSimilarity(data_model, distance, nhood_size)
def user_neighborhood(self, user_id, data_model, n_similarity='user_similarity',
distance=None, nhood_size=None, **params):
minimal_similarity = params.get('minimal_similarity', 0.0)
sampling_rate = params.get('sampling_rate', 1.0)
data_model = self._sampling(data_model, sampling_rate)
if distance is None:
distance = euclidean_distances
if n_similarity == 'user_similarity':
self._set_similarity(data_model, n_similarity, distance, nhood_size)
else:
raise ValueError('similarity argument must be user_similarity')
neighborhood = [to_user_id for to_user_id, score in self.similarity[user_id] \
if not np.isnan(score) and score >= minimal_similarity and \
user_id != to_user_id]
return neighborhood
class UserBasedRecommender(BaseEstimator):
def __init__(self, model, similarity, neighborhood=None,
capper=True, with_preference=False):
self.model = model
self.similarity = similarity
self.capper = capper
self.with_preference = with_preference
if neighborhood == None:
self.neighborhood = NearestNeighbors()
def all_other_items(self, user_id, **params):
n_similarity = params.pop('n_similarity', 'user_similarity')
distance = params.pop('distance', self.similarity.distance)
nhood_size = params.pop('nhood_size', None)
nearest_neighbors = self.neighborhood.user_neighborhood(user_id,
self.model, n_similarity, distance, nhood_size, **params)
items_from_user_id = self.model.items_from_user(user_id)
possible_items = []
for to_user_id in nearest_neighbors:
possible_items.extend(self.model.items_from_user(to_user_id))
possible_items = np.unique(np.array(possible_items).flatten())
return np.setdiff1d(possible_items, items_from_user_id)
def estimate_preference(self, user_id, item_id, **params):
preference = self.model.preference_value(user_id, item_id)
if not np.isnan(preference):
return preference
n_similarity = params.pop('n_similarity', 'user_similarity')
distance = params.pop('distance', self.similarity.distance)
nhood_size = params.pop('nhood_size', None)
nearest_neighbors = self.neighborhood.user_neighborhood(user_id,
self.model, n_similarity, distance, nhood_size, **params)
preference = 0.0
total_similarity = 0.0
similarities = np.array([self.similarity.get_similarity(user_id, to_user_id)
for to_user_id in nearest_neighbors]).flatten()
prefs = np.array([self.model.preference_value(to_user_id, item_id)
for to_user_id in nearest_neighbors])
prefs = prefs[~np.isnan(prefs)]
similarities = similarities[~np.isnan(prefs)]
prefs_sim = np.sum(prefs[~np.isnan(similarities)] *
similarities[~np.isnan(similarities)])
total_similarity = np.sum(similarities)
if total_similarity == 0.0 or not similarities[~np.isnan(similarities)].size:
return np.nan
estimated = prefs_sim / total_similarity
if self.capper:
max_p = self.model.maximum_preference_value()
min_p = self.model.minimum_preference_value()
estimated = max_p if estimated > max_p else min_p if estimated < min_p else estimated
return estimated
def recommend(self, user_id, how_many=None, **params):
self._set_params(**params)
candidate_items = self.all_other_items(user_id, **params)
recommendable_items = self._top_matches(user_id, candidate_items, how_many)
return recommendable_items
def _top_matches(self, source_id, target_ids, how_many=None, **params):
if target_ids.size == 0:
return np.array([])
estimate_preferences = np.vectorize(self.estimate_preference)
preferences = estimate_preferences(source_id, target_ids)
preference_values = preferences[~np.isnan(preferences)]
target_ids = target_ids[~np.isnan(preferences)]
sorted_preferences = np.lexsort((preference_values,))[::-1]
sorted_preferences = sorted_preferences[0:how_many] if how_many and sorted_preferences.size > how_many else sorted_preferences
if self.with_preference:
top_n_recs = [(target_ids[ind], preferences[ind]) for ind in sorted_preferences]
else:
top_n_recs = [target_ids[ind] for ind in sorted_preferences]
return top_n_recs