-
Notifications
You must be signed in to change notification settings - Fork 140
/
Copy pathencoding.py
38 lines (28 loc) · 1.75 KB
/
encoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
import torch.nn as nn
import torch.nn.functional as F
def get_encoder(encoding, input_dim=3,
multires=6,
degree=4,
num_levels=16, level_dim=2, base_resolution=16, log2_hashmap_size=19, desired_resolution=2048, align_corners=False,
**kwargs):
if encoding == 'None':
return lambda x, **kwargs: x, input_dim
elif encoding == 'frequency':
from freqencoder import FreqEncoder
encoder = FreqEncoder(input_dim=input_dim, degree=multires)
elif encoding == 'spherical_harmonics':
from shencoder import SHEncoder
encoder = SHEncoder(input_dim=input_dim, degree=degree)
elif encoding == 'hashgrid':
from gridencoder import GridEncoder
encoder = GridEncoder(input_dim=input_dim, num_levels=num_levels, level_dim=level_dim, base_resolution=base_resolution, log2_hashmap_size=log2_hashmap_size, desired_resolution=desired_resolution, gridtype='hash', align_corners=align_corners)
elif encoding == 'tiledgrid':
from gridencoder import GridEncoder
encoder = GridEncoder(input_dim=input_dim, num_levels=num_levels, level_dim=level_dim, base_resolution=base_resolution, log2_hashmap_size=log2_hashmap_size, desired_resolution=desired_resolution, gridtype='tiled', align_corners=align_corners)
elif encoding == 'ash':
from ashencoder import AshEncoder
encoder = AshEncoder(input_dim=input_dim, output_dim=16, log2_hashmap_size=log2_hashmap_size, resolution=desired_resolution)
else:
raise NotImplementedError('Unknown encoding mode, choose from [None, frequency, spherical_harmonics, hashgrid, tiledgrid]')
return encoder, encoder.output_dim