diff --git a/doc/2.0/Quick Start.md b/doc/2.0/Quick Start.md new file mode 100644 index 0000000000..eab38a25a6 --- /dev/null +++ b/doc/2.0/Quick Start.md @@ -0,0 +1,102 @@ +## Quick Start + +1. install `fate_client` with extra package `fate` + +```sh +python -m pip install -U pip && python -m pip install fate_client[fate]==2.0.0a0 +``` + +2. download example data + +```sh +wget https://raw.githubusercontent.com/wiki/FederatedAI/FATE/example/data/breast_hetero_guest.csv && \ +wget https://raw.githubusercontent.com/wiki/FederatedAI/FATE/example/data/breast_hetero_host.csv +``` + +3. run example with fate_client + +```python +import os + +from fate_client.pipeline import StandalonePipeline +from fate_client.pipeline.components.fate import ( + Evaluation, + FeatureScale, + HeteroLR, + Intersection, + Reader, +) + +base_path = os.path.abspath(os.path.join(__file__, os.path.pardir)) +guest_data_path = os.path.join(base_path, "breast_hetero_guest.csv") +host_data_path = os.path.join(base_path, "breast_hetero_host.csv") + +# create pipeline +pipeline = StandalonePipeline().set_roles(guest="9999", host="10000", arbiter="10001") + +# create reader component +reader_0 = Reader(name="reader_0") +reader_0.guest.component_param( + path=f"file://${guest_data_path}", + format="csv", + id_name="id", + delimiter=",", + label_name="y", + label_type="float32", + dtype="float32", +) +reader_0.hosts[0].component_param( + path=f"file://${host_data_path}", + format="csv", + id_name="id", + delimiter=",", + label_name=None, + dtype="float32", +) + +# create intersection component +intersection_0 = Intersection(name="intersection_0", method="raw", input_data=reader_0.outputs["output_data"]) +intersection_1 = Intersection(name="intersection_1", method="raw", input_data=reader_0.outputs["output_data"]) + +# create feature scale component +feature_scale_0 = FeatureScale( + name="feature_scale_0", method="standard", train_data=intersection_0.outputs["output_data"] +) +feature_scale_1 = FeatureScale( + name="feature_scale_1", + test_data=intersection_1.outputs["output_data"], + input_model=feature_scale_0.outputs["output_model"], +) + +# create lr component +lr_0 = HeteroLR( + name="lr_0", + train_data=feature_scale_0.outputs["train_output_data"], + validate_data=feature_scale_1.outputs["test_output_data"], + max_iter=100, + learning_rate=0.03, + batch_size=-1, +) + +# create evaluation component +evaluation_0 = Evaluation(name="evaluation_0", runtime_roles="guest", input_data=lr_0.outputs["train_output_data"]) + +# add components +pipeline.add_task(reader_0) +pipeline.add_task(feature_scale_0) +pipeline.add_task(feature_scale_1) +pipeline.add_task(intersection_0) +pipeline.add_task(intersection_1) +pipeline.add_task(lr_0) +pipeline.add_task(evaluation_0) + +# train +pipeline.compile() +print(pipeline.get_dag()) +pipeline.fit() +print(pipeline.get_task_info("feature_scale_0").get_output_model()) +print(pipeline.get_task_info("lr_0").get_output_model()) +print(pipeline.get_task_info("lr_0").get_output_data()) +print(pipeline.get_task_info("evaluation_0").get_output_metrics()) +print(pipeline.deploy([intersection_0, feature_scale_0, lr_0])) +```