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A B S T R A C T   

The development of efficient methods for mining information from heterogeneous information networks (HINs) 
has become essential for improving the accuracy of collective entity linking in the absence of third-party 
knowledge bases. Currently, there remain three major challenges in the latest research: (1) The objective 
function of collective entity linking does not fully embrace the concept of “collective linking”. (2) The objective 
function employs the mean value rather than the maximum value of the entity relatedness as a link parameter, 
while discounting the importance of the strong logical associations between the text and language for meaning 
recognition. (3) The objective function utilizes only one type of 2-hop path to contribute to entity relatedness, 
thereby disregarding other types of 2-hop path that exist in actual HINs. To address the aforementioned issues, 
this paper proposes a strong-relatedness-sequence-based fine-grained collective entity linking method (SRSCL). 
The SRSCL is capable of capturing the contextual information of the entity in the HINs, thereby providing 
improved accuracy in entity linking. Specifically, SRSCL constructs a knowledge representation learning model 
and proposes an overall semantic similarity model for entity mentions and candidate entities to solve the 
objective function and thereby reflect the idea of “collective linking”. Additionally, a strong-relatedness- 
sequence-based overall relatedness measurement model is proposed for candidate entities to emphasize the 
strong logical associations between them. Furthermore, SRSCL defines three types of 2-hop path and evaluates 
the importance of each path to accurately measure the relatedness of entities. Finally, the experimental results 
demonstrate that the proposed SRSCL is more effective in capturing the overall relatedness of entities than the 
latest model. Particularly, when the number of entity mentions contained in one sliding window is greater than 6, 
the proposed SRSCL improves the precision, recall and F1 score by more than 10% compared with the latest 
model.   

1. Introduction 

A heterogeneous information network (Sun et al., 2009) (HIN) is a 
structured text knowledge representation consisting of a series of nodes 
and edges between nodes, which contains multiple node types and 
relation types. For instance, YAGO can be regarded as a HIN (Huang 
et al., 2016). As illustrated in Fig. 1, YAGO contains numerous node 
types and relations. With its simple and efficient knowledge represen
tation and powerful semantic reasoning capability, HINs have become a 

prevalent method for knowledge storage. Consequently, the develop
ment of natural language processing technologies related to HINs has 
accelerated, such as entity linking (Oliveira et al., 2021; Ravi et al., 
2021), named entity recognition (Nasar et al., 2021; Song et al., 2021) 
and relation extraction (Geng et al., 2020; Li & Tian, 2020). 

The task of entity linking for heterogeneous information networks 
(HINs) is a critical problem in the application of such networks. This 
task, which involves mapping entity mentions in a text to the corre
sponding knowledge base (represented as a HIN in this paper), requires 
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finding the unique entity in the HIN that corresponds to the entity 
mention in order to complete the mapping process. An accurate entity 
linking method can effectively match the knowledge in the knowledge 
base that is consistent with the query target, recommending the query 
target and the associated knowledge to the user and thus achieving the 
goal of knowledge association. Moreover, such a method can improve 
the efficiency of knowledge retrieval (Akabe et al., 2021; Wu et al., 
2022), thus providing better user experience. Furthermore, it can also 
facilitate the development of a variety of downstream applications, 
including knowledge recommendation (Xie et al., 2021; Ye et al., 2021) 
and knowledge reasoning (Z. Li et al., 2021). 

Entity linking is divided into two parts, including: independent entity 
linking and collective entity linking (Shen, Wang, et al., 2014). Typi
cally, independent entity linking (Onoe & Durrett, 2020; Wang et al., 
2015) relies solely on the information of the current entity mention. 
Thus, independent entity linking methods typically necessitate no 
training and are computationally simpler than other approaches. Yet, 
without considering sufficient contextual information from a window or 
sentence, the accuracy of independent entity linking is substantially 
reduced, particularly when the context of the entity mention is sparse or 
contains considerable noise. For example, Daiber et al. developed an 
open source entity linking system Spotlight, allowing users to configure 
the system according to their specific needs (Daiber et al., 2013). Seufert 
et al. proposed a KORE method to estimate the semantic similarity be
tween entities based on key phrase overlap (Hoffart et al., 2012). 

Generally, collective entity linking (Liu et al., 2019; Sevgili et al., 
2022) considers the relatedness between multiple entity mentions in a 
window or a sentence. In collective entity linking, not only the features 
of the current entity mention are considered, but also the relatedness to 
other entity mentions needs to be considered. As a result, entity men
tions corroborate each other in the entity linking process. Thus, collec
tive entity linking is completed, as shown in in Fig. 2. Nevertheless, due 
to the need to calculate the semantic relations between the entity 
mentions, collective entity linking methods often have high linking 

accuracy but a high computational complexity. For example, Chong 
et al. (Chong et al., 2017) considered that events or geographic points of 
interests often lead to related entities being mentioned in space and 
time, and used tweets that are spatially and temporally close for col
lective entity linking. Xia et al. (Xia et al., 2020) proposed a collective 
entity linking algorithm based on topic models and graphs, which 
combines the entity context and semantic relations between entities. 

Extracting knowledge from heterogeneous information networks has 
become a difficult issue for improving the accuracy of entity linking. 
Methods based on probability models for entity linking in heterogeneous 
information networks is currently a hot research topic. Ganea et al. 
(Ganea et al., 2016) proposed a probabilistic approach PBoH that makes 
use of an effective graphical model to perform collective entity disam
biguation. However, this method is based on certain empirical as
sumptions, and it ignores the relational information in the knowledge 
base, so it may be difficult to apply to HINs with limited information. To 
address the limited information of HINs, Shen et al. (Shen, Han, et al., 
2014) established a general SHINE entity linking framework, which is a 
probability model to link named entities in web text with HINs. To 
further extract information form HINs, Wang et al. (Shen et al., 2017) 
added a knowledge population algorithm (Shen, Han, et al., 2014) to 
SHINE and proposed a general unsupervised framework SHINE+. While 
these methods provide efficient solutions, they rely on meta-paths to 
extract information on entity types and relation types from HINs, 
thereby ignoring the information of the entities and relations them
selves. To address this issue, Li et al. (J. Li et al., 2021) combined the 
“global precedence” cognitive mechanism of the human brain with en
tity linking for the first time and proposed a coarse-to-fine collective 
entity linking method (CFEL) for heterogeneous information networks, 
which makes full use of the information of the entities and relations 
themselves. 

At present, three main challenges remain for probability-based col
lective entity linking methods, which impede the effective extraction of 
information from heterogeneous information networks and further 
hinder the accuracy of entity linking: (1) The objective function of col
lective entity linking is not solved in the full meaning of “collective 
linking”, which may lead to the failure of collective entity linking. (2) 
The link parameter is based on the mean of the relatedness between 
candidate entities rather than the maximum, which does not highlight 
the important role of the strong logical relationship between text and 
language for the meaning, leading to difficulty in accurately measuring 
the strong logical associations between multiple candidate entities. (3) 
The contribution of entity relatedness by other types of 2-hop path is 
neglected in the objective function, only considering one type of 2-hop 
path, resulting in inaccurate measurement of entity relatedness. Thus, 
this paper aims to propose a collective entity linking method to address 
the above issues. 

Fig. 1. A simple framework of YAGO.  

Fig. 2. An example of collective entity linking.  
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2. Motivation 

This section begins by taking the objective function solution of the 
latest collective entity link method as an example to analyze three key 
issues of the current collective entity linking methods for heterogeneous 
information networks in depth. Lastly, it highlights the contributions 
and innovations of this paper to collective entity linking. 

The state-of-the-art collective entity linking method for heteroge
neous information network CFEL (J. Li et al., 2021) is employed to solve 
the collective entity linking objective function by taking into account the 
relatedness of entities and the surface similarity between entity mention 
and candidate entity, as expressed in Eq. (1). 

arg max
e1 ,⋯,eq

P
(
m1,⋯,mq;e1,⋯,eq

)
=arg max

e1 ,⋯,eq
P
(
e1,⋯,eq

)
×P
(
m1,⋯,mq

⃒
⃒e1,⋯,eq

)

=arg max
e1 ,⋯,eq

P
(
e1,⋯,eq

)
×
∏q

i=1
P(mi|ei )

=arg max
e1 ,⋯,eq

∑q

i=1

∑q

j=1&j∕=i

R
(
ei,ej

)
×
∏q

i=1
S(mi|ei )

(1)  

where mi is the ith entity mention in the text and ei is a candidate entity 
of the entity mi. M is the entity mention set in the text and q = |M| de
notes the size of the entity mention set. R

(
ei, ej

)
is a function that mea

sures the relatedness between entity ei and entity ej. S(mi|ei ) represents 
the surface similarity between the entity mi and entity ei. 

To accurately and clearly describe the collective entity linking 
objective function, this paper denotes a tuple of all the entity mentions 
in a text as an entity mention group, and a tuple composed of one 
candidate entity for each entity mention as a candidate entity group. For 
example, in Eq. (1), 

(
m1,⋯,mq

)
is an entity mention group and 

(
e1,⋯,

eq
)

is a candidate entity group of 
(
m1,⋯,mq

)
. 

Eq. (1) indicates that the CFEL model leverages the relatedness of 
entities to estimate the co-occurrence probability of entities, and further 
computes the conditional probability between the entity mention group 
and the candidate entity group through the surface similarity between 
the entity mention and the candidate entity. Evidence has shown that 
the CFEL model achieves excellent entity linking performance in col
lective entity linking. However, there are three main challenges need to 
be addressed in CFEL.  

(1) CFEL does not employ full meaning of “collective linking” 
concept in solving the objective function of collective entity 
linking. When CFEL estimates the conditional probability of the 
entity mention group and the candidate entity group 
P
(
m1,⋯,mq

⃒
⃒e1,⋯, eq

)
, it assumes that each entity mention 

independently selects the candidate entity, i.e., P
(
m1,⋯,mq

⃒
⃒e1,⋯ 

, eq
)
=
∏q

i=1P(mi|ei ). This calculation runs counter to the idea of 
“collective linking”, which essentially assumes that entity men
tions m1,⋯,mq and e1,⋯, eq are independent, with no relatedness 
between them. However, given the logical nature of language, it 
is generally accepted that the semantic similarity of entity men
tions in a text is usually strong. Consequently, the impact of the 
overall semantic similarity of entity mention group and the 
overall semantic similarity of candidate entity group should be 
considered when computing the conditional probability.  

(2) CFEL employs the mean rather than the maximum value of the 
entity relatedness as a link parameter for solving the objective 
function, thus discounting the importance of the strong logical 
associations between the text and language for meaning recogni
tion. Specifically, the CFEL adopts the cumulative relatedness of 
arbitrary candidate entity pairs to represent the overall logical 
associations of the entity mention group (denoted as overall 
relatedness), and then estimates P

(
e1,⋯, eq

)
, i.e., P

(
e1,⋯, eq

)
=

∑q
i=1
∑q

j=1&j∕=iR
(
ei, ej

)
. Due to the introduction of entity pairs that 

are unrelated or weakly related during the computing process, the 
contribution of strongly-related entity pairs to the overall relat
edness is weakened. It has been shown that the cumulative relat
edness to represent the overall relatedness of entity mention group 
can easily lead to the failure of collective entity linking. For 
example, there is a real case in YAGO. (MANCHESTER, England, 
Glamorgan, Robert Croft) is an entity mention group and 
(<Manchester>, <England>, <Glamorgan_County_Cricket_ 
Club>, <Robert_Croft>) and (<Manchester>, <England>, 
<Glamorgan_County_Cricket_Club>, <Robert_Frost>) are two 
candidate entity groups of the entity mention group. Moreover, the 
first candidate entity group is the correct candidate entity group. 
However, the cumulative relatedness of the first/second candidate 
entity group is 3.37/3.43. Obviously, the entity linking is failed 
because of using the cumulative relatedness to measure the overall 
relatedness of the candidate entity group.  

(3) CFEL only adopts one type of 2-hop path (i.e., directed 2-hop) to 
solve the objective function when computing the relatedness of 
entities. This neglects the contribution of other types of 2-hop 
path in heterogeneous information networks to the relatedness 
of entities, limiting the accuracy of entity relatedness measure
ment. In fact, there are various types of 2-hop path between two 
entities, such as path in which two entities point to a common 
entity, path in which two entities are pointed to by a common 
entity, and so on. For example, Fig. 3 shows that there are three 
types of 2-hop paths between entities “Ming Yao” and “Li Ye”. 

“Ming Yao →isFriendOf Na Xie →isFriendOf Li Ye” and “Li Ye →isFriendOf 

Guanxi Chen →isFriendOf Ming Yao” are two directed 2-hop paths. 
The former is a directed 2-hop path from “Ming Yao” to “Li Ye”, 
while the latter is a directed 2-hop path from “Li Ye” to “Ming 

Yao”. “Ming Yao →isSonOf Zhiyuan Yao←̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
isDaughter - in - lawofLi Ye” is a path that “Li Ye” and “Ming 
Yao” point to the common entity “Zhiyuan Yao” and 

“Ming Yao←isDaughterof Qinlei Yao →
isDaughterof

Li Ye” is a path that 
“Li Ye” and “Ming Yao” are pointed by the common entity “Qinlei 
Yao”. In fact, all the 2-hop paths contribute to the relatedness of 
two entities. “Qinlei Yao”, daughter of “Ming Yao” and “Li Ye”, 
plays a vital role in measuring the relatedness of “Ming Yao” and 
“Li Ye”. However, this aspect is not taken into consideration in 
CFEL, making it challenging to accurately quantify the related
ness of two entities with the directed 2-hop path. 

To address the three key challenges of CFEL and improve the accu
racy of collective entity linking, a novel collective entity linking method 
for HINs is proposed in this paper, i.e., a strong-relatedness-sequence- 
based fine-grained collective entity linking method (SRSCL). The in
novations of our approach are as follows.  

• To make the collective entity linking solution more consistent with 
the idea of “collective linking”, this paper develops a knowledge 
representation learning model to extract the semantic information of 
entities, and innovatively proposes an overall semantic similarity 
model for candidate entity group to accurately estimate the condi
tional probability between entity mention group and candidate en
tity group P

(
m1,⋯,mq

⃒
⃒e1,⋯, eq

)
, which is discussed in Section 3.2.4. 

Experimental results verify the effectiveness of considering entity 
semantic information. 
• To emphasize the contribution of strong logical associations of en

tities to the overall relatedness of candidate entity group, SRSCL 
introduces the concept of relatedness graph and relatedness 
sequence, and proposes a strong-relatedness-sequence-based overall 
relatedness measurement model to capture the overall relatedness of 
the candidate entity group (as discussed in Section 3.2.2). The 
experimental results validate the effectiveness of the proposed strong 
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relatedness sequence in capturing the overall relatedness of the 
candidate entity group.  
• To make full use of the graph structure information in heterogeneous 

information networks, this paper defines three types of 2-hop path to 
measure entity pair relatedness. The first is the path that two entities 

point to a common entity, the second is the path that two entities are 
pointed by a common entity, and the third is a directed 2-hop path 
between two entities. Based on the three types of 2-hop path and 
their respective contributions to entity relatedness, an entity pair 
relatedness measurement model is proposed to accurately measure 

Fig. 3. Relationship between Yao Ming and Ye Li.  

Fig. 4. The structure diagram of this paper.  
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the relatedness of two entities (as discussed in Section 3.2.3). 
Experimental results verify the effectiveness of the three types of 2- 
hop path proposed in this paper in improving the accuracy of the 
entity linking. 

The structure of this paper is as follows. Section 3 presents the pro
posed SRSCL method, comprising of two parts: (i) the candidate entity 
generation method, which aims to generate candidate entities and prune 
them to narrow down the scope of the collective entity linking problem 
(as discussed in Section 3.1), and (ii) a strong-relatedness-sequence- 
based collective entity linking method, which aims to address the 
three key issues for accurately solving the collective entity linking 
function (as discussed in Section 3.2). Section 4 introduces the experi
mental results and analysis. Section 5 gives the conclusion of this paper. 

The structure diagram of this paper is shown in Fig. 4. Fig. 4 indicates 
that this paper gradually decomposes and analyzes the objective func
tion from top to bottom. Initially, a candidate entity generation method 
is proposed to generate candidate entities and narrow down the solution 

scope. Subsequently, the objective function is decomposed into two 
subtasks: computing the co-occurrence probability of entities and the 
conditional probability between entity mention group and candidate 
entity group. For the former, the co-occurrence probability is calculated 
based on the strong relatedness sequence, which is obtained from the 
entity relatedness. For the latter, the conditional probability is further 
broken down into three sub-objectives to complete the sub-objective 
solution. Therefore, the collective entity linking objective function can 
be solved. 

3. A strong-relatedness-sequence-based fine-grained collective 
entity linking method for heterogeneous information networks 

In this section, we propose a strong-relatedness-sequence-based fine- 
grained collective entity-linking method (SRSCL) for heterogeneous in
formation networks to tackle the three key issues of CFEL in collective 
entity linking. The proposed method consists of two parts, as follows. 

Fig. 5. The collective entity linking implementation process of the SRSCL.  
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i) The first part is candidate entity generation and two-step pruning 
strategy, which is responsible for generating a set of possible 
candidate entities for each entity mention.  

ii) The second part is a strong-relatedness-sequence-based collective 
entity linking method, which sorts candidate entities to identify the 
correct candidate entities. 

The collective entity linking implementation process of the SRSCL is 
illustrated in Fig. 5. 

3.1. Candidate entity generation and two-step pruning strategy 

Candidate entity generation plays an important role in entity linking, 
which finds the candidate entities that may refer to the same reality as 
the entity mention from a given network. If the correct candidate entity 
is not in the entity mention’s candidate entity set, an entity mention 
cannot be linked to the correct candidate entity. Therefore, the candi
date entity generation should try to ensure that the correct entity of the 
entity mention is in the candidate entity set, i.e., ensuring the recall of 
the entity mention. In this paper, a candidate entity set Ei can be 
generated for the entity mention mi ∈ M through the following strategy.  

• An entity in the HIN, which completely contained in the entity 
mention or completely contains the entity mention, is considered as a 
candidate entity of the entity mention.  
• Except for unimportant words such as “of” and “I”, an entity in the 

HIN that have common words with the entity mention is considered 
as a candidate entity of the entity mention.  
• An entity in the HIN, which is the abbreviation of the entity mention 

or the full name of the entity mention, is considered as a candidate 
entity of the entity mention. 

Nevertheless, some entity mentions have a large number of candi
date entities, which greatly increases the computational complexity of 
collective entity linking. For example, the size of the candidate entity set 
of “World Cup” is 123. To reduce the complexity, it is necessary to prune 
the candidate entity set while ensuring that the correct candidate entity 
of the entity mention is still present in the new candidate entity set. The 
entity type can be easily obtained through entity type annotation. The 
entity mention type can also be obtained through language model and 
classification model (J. Li et al., 2021). Thus, this paper assumes that the 
entity mention type and the entity type in HIN are already known. To 
this end, a two-step pruning strategy is established to prune the candi
date entity set to get the top-k candidate entities that are similar to the 
entity mention. First, the candidate entity set is pruned based on the 
known entity mention type. Second, the candidate entity set is pruned 
based on the similarity between the candidate entity and the entity 
mention.  

• Remove entities in the candidate entity set that are of a different type 
than the entity mention.  
• If the size of the candidate entity set exceeds k, preference is given to 

the entity with the abbreviation of the entity mention or the full 
name of the entity mention. By doing so, the top-k most similar 
candidate entities to the entity mention can be obtained. 

3.2. A strong-relatedness-sequence-based collective entity linking method 

In this section, a strong-relatedness-sequence-based collective entity 
linking method is proposed to solve the three key issues in the objective 
function of collective entity linking. Specifically, Section 3.2.2 proposes 
a strong-relatedness-sequence-based overall relatedness measurement 
model for candidate entity group to highlight the strong logical associ
ations between natural language and accurately estimate the co- 
occurrence probability. Section 3.2.3 proposes an entity pair related
ness measurement model based on three types of 2-hop path to 

effectively utilize various types of 2-hop path in HINs, allowing for the 
estimation of entity relatedness with greater accuracy. Moreover, Sec
tion 3.2.4 introduces an overall semantic similarity model for entity 
mention group and candidate entity group to ensure that the objective 
function solution does not deviate from the idea of “collective linking”. 
In this way, the conditional probability between entity mention group 
and candidate entity group can be estimated with greater precision. 
Finally, based on the three models described above, three representa
tions of the SRSCL are proposed, as detailed in Section 3.2.4. 

3.2.1. Objective function construction for collective entity linking in 
heterogeneous information networks 

To accurately and clearly describe the collective entity linking task, 
this section first defines the concepts of entity mention group and 
candidate entity group. Subsequently, an objective function for collec
tive entity linking towards heterogeneous information networks is 
constructed. 

Definition 1. ((entity mention group, candidate entity group)) Given an 
entity mention set M =

{
m1,m2,⋯,mq

}
, and a set of candidate entities 

Ei =
{
ei1 , ei2 ,⋯, eik ,⋯, eini

}
(generated by Section 3.1) for entity mention 

mi, where eik denotes the kth candidate entity for mi and ni denotes the 
number of candidate entities for mi. In the entity linking process, a tuple 
of all the entity mentions in M is referred to as an entity mention group, 
and a tuple composed of one candidate entity for each entity mention as 
a candidate entity group, i.e., (e1k1 , e2k2 ,⋯, eiki ,⋯, eqkq ) ∈ E1 × E2 ×⋯×
Ei ×⋯× Eq is an candidate entity group of the entity mention group (m1,

m2,⋯,mq). 

Definition 2. ((collective entity linking for HINs)) Given an entity 
mention set M =

{
m1,m2,⋯,mq

}
, and a set of candidate entities E =

{
E1,E2,⋯, Eq

}
, where Ei denotes the a set of candidate entities for mi. 

The goal of collective entity linking is to identify a candidate entity 
group 

(
e1, e2,⋯, eq

)
from HINs that denotes the same real-world fact as 

the mention group 
(
m1,m2,⋯,mq

)
. 

Objective function construction for collective entity linking: given an 
entity mention set M =

{
m1,m2,⋯,mq

}
of a text or a sliding window, an 

entity mention type set t =
{
t1, t2,⋯, tq

}
and a candidate entity set ET =

{
ET

1 ,ET
2 ,⋯, ET

q

}
, where ti is the type of entity mention mi, ET

i = {(ei1, ti1),

(ei2, ti2),⋯, (ein, tin) } denotes the candidate entity set of entity mention 
mi, and (ei1, ti1) denotes that ti1 is the type of candidate entity ei1. After 
pruning, the pruned candidate entity set is E =

{
E1, E2,⋯,Eq

}
, where 

Ei = {ei1, ei2,⋯, ein}. Then objective function for collective entity linking 
in heterogeneous information networks is given in Eq. (2). 

arg max
e1∈ET

1 ,⋯,eq∈ET
q

P
(
M,T;ET)

= arg max
e1∈E1 ,⋯,eq∈Eq

P
( (

m1,m2,⋯,mq
)
;
(
e1, e2,⋯, eq

) )

= arg max
e1∈E1 ,⋯,eq∈Eq

P
(
e1, e2,⋯, eq

)
× P

( (
m1,m2,⋯,mq

)
|
(
e1, e2,⋯, eq

) )

(2)  

where 
(
m1,m2,⋯,mq

)
is an entity mention group of M and mi is the ith 

entity mention. 
(
e1, e2,⋯, eq

)
is a candidate entity group of 

(
m1,m2,⋯,mq

)
, and ei is an element of Ei. P

( (
m1,m2,⋯,mq

)
;
(
e1, e2,⋯,

eq
) )

denotes the probability that the entity mention group 
(
m1,m2,⋯,

mq
)

refers to the candidate entity group 
(
e1, e2,⋯, eq

)
. P
(
e1, e2,⋯, eq

)

indicates the probability that 
(
e1, e2,⋯, eq

)
co-occurrence in the same 

text. Additionally, P
( (

m1,m2,⋯,mq
)
|
(
e1, e2,⋯, eq

) )
refers to the con

ditional probability of 
(
m1,m2,⋯,mq

)
when 

(
e1, e2,⋯, eq

)
is known. The 

calculation of P
( (

m1,m2,⋯,mq
)
|
(
e1, e2,⋯, eq

) )
is described in detail as 

below. 
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3.2.2. A strong-relatedness-sequence-based overall relatedness 
measurement model for candidate entity group 

In this section, a strong-relatedness-sequence-based overall related
ness measurement model is proposed to emphasize the strong logical 
associations between text and language, as well as to accurately estimate 
the co-occurrence probability of candidate entity group. This model 
addresses the shortcomings of traditional methods which rely on accu
mulative the relatedness of every two candidate entities to measure 
overall relatedness. By doing so, the model highlights the contribution of 
entities with strong relatedness to the overall relatedness of the candi
date entity group. 

According to the logical characteristics of human language, entity 
mentions in the same text are highly interrelated. Thus, the entity 
mention group of a text can be considered as a whole. Because hetero
geneous information networks are constructed by extracting large 
amounts of textual information, the candidate entity group corre
sponding to entity mention group can also be regarded as a whole. 
Generally, if the overall relatedness of the candidate entity group is 
stronger, the co-occurrence probability is greater. However, it is difficult 
to effectively measure the overall relatedness of candidate entity group. 

To address the above problems, this paper proposes the concept of 
relatedness graph and strong relatedness sequence. The strong related
ness sequence is designed to weaken the influence of unrelated entity 
pairs or weakly related entities on the overall relatedness of the candi
date entity group. Therefore, the contribution of strong related entity 
pairs to the overall relatedness of candidate entity group is highlighted. 

Definition 3. ((relatedness graph, relatedness sequence and strong relat
edness sequence)) Given a candidate entity group 

(
e1, e2,⋯, eq

)
and 

the relatedness between each two candidate entities, a q-order related
ness graph is a q-order undirected complete graph (Biggs, 2002), in 
which the edge between two entities is represented by their relatedness. 
A relatedness sequence is defined as a connected spanning subgraph of 
the relatedness graph, and its edge set contains q − 1 edges. The relat
edness sequence with the highest cumulative relatedness in the relat
edness graph is termed the strong relatedness sequence. 

Fig. 6 depicts a 4-order relatedness graph and its two relatedness 
sequences (i.e. the red solid line and the blue solid line). And the red 
relatedness sequence has the highest relatedness among all the relat
edness sequences in the 4-order relatedness graph, with a relatedness of 
2.4. It is noteworthy that the strong relatedness sequence does not 
necessarily have to be a path, as demonstrated by the blue solid line in 
Fig. 6, which is a tree. 

Based on the strong relatedness sequence, this paper proposes a 
strong-relatedness-sequence-based overall relatedness measurement 
model. Moreover, this model is effective in estimating the co-occurrence 
probability of the candidate entity group, which is given in Eq. (3). 

P
(
e1, e2,⋯, eq

)
=

∑

(ei ,ej)∈Tree1(e1 ,e2 ,⋯,eq)

R
(
ei, ej

)
(3)  

where Tree1
(
e1, e2,⋯, eq

)
denotes the strong relatedness sequence of 

entity e1, e2,⋯, eq and R
(
ei, ej

)
denotes the relatedness between entity ei 

and entity ej. 
As shown in Fig. 7, a variety of relatedness sequences are present in 

the 4-order relatedness graph. Enumerating all relatedness sequences is 
difficult, therefore, three relatedness sequences are listed in Fig. 7. The 
subgraph (a), (b) and (c) represent the first, second and third relatedness 
sequences, respectively. And (d) represents other relatedness sequences. 
The goal is to identify the strong relatedness sequence. To this end, the 
Maximum Weight Spanning Tree Algorithm can be employed, in 
accordance with the principles of graph theory, to obtain the strong 
relatedness sequence from the relatedness graph. 

To verify the efficacy of the strong-relatedness-sequence-based 
overall relatedness measurement model, we compare it with the tradi
tional method in CFEL for calculating the overall relatedness of the 
candidate entity group. Specifically, we measure the performance of 
both methods in terms of their ability to capture the overall relatedness. 
For example, the two methods are applied to the real case of YAGO 
introduced in Section 2. By the proposed model in this paper, the overall 
relatedness of the candidate entity group (<Manchester>, <England>, 
<Glamorgan_County_Cricket_Club>, <Robert_Croft>) is 1.39, and the 
overall relatedness of the candidate entity group (<Manchester>, 
<England>, <Glamorgan_County_Cricket_Club>, <Robert_Frost>) is 
1.34. The calculation results demonstrate that the strong-relatedness- 
sequence-based overall relatedness measurement model can effectively 
complete the entity linking. Compared to the method used in the CFEL, 
the strong relatedness sequence can more accurately measure the overall 
relatedness of the candidate entity group, leading to improved accuracy 
of the collective entity linking. 

3.2.3. Entity pair relatedness measurement model based on three 2-hop 
path 

In this section, we address the problem of accurately quantifying 
entity relatedness using only one types of 2-hop path in the CFEL. To this 
end, we analyze heterogeneous information networks and propose a 
novel entity pair relatedness measurement model based on three 2-hop 
path. Specifically, we define three types of 2-hop path and measure the 
contribution of each type of 2-hop path to the entity relatedness. 

It is necessary to obtain the relatedness of each two entities in 
advance when calculating the co-occurrence probability of a candidate 
entity group. Previous studies have verified that the 1-hop and 2-hop 
path of entities can effectively capture the relatedness information be
tween entities. However, longer paths will bring more noise and reduce 
the relatedness information between entities (J. Li et al., 2021). Mean
while, CFEL only adopts one type of 2-hop path (i.e., directed 2-hop 
path) to measure the relatedness of two entities. In fact, there are 
several types of 2-hop path connecting two entities, such as path in 
which the two entities point to a common entity. Importantly, these 
various 2-hop path have different contributions to accurately measure 
the relatedness of two entities. For example, “Qinlei Yao” is the daughter 
of “Ming Yao” and “Li Ye”, “Ming Yao” is closely connected with “Li Ye” 
through “Qinlei Yao”. CFEL ignores the contribution of “Qinlei Yao” 
when calculating the relatedness between “Ming Yao” and “Li Ye”, 
which hinders its accuracy in measuring the relatedness between entity 
pair. 

Fig. 6. Examples of relatedness graph and its two relatedness sequences.  
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In this paper, we divide 2-hop path into three types. The first is the 
path that two entities point to a common entity, the second is the path 
that two entities are pointed to by a common entity, and the last is the 
path that a directed 2-hop path exists between two entities (i.e., used in 
CFEL, which is marked with a wireframe in Fig. 8). Fig. 8 shows three 
possible types of 2-hop path between entity ei and entity ej. Actually, 
there are three types of 2-hop path between two entities in YAGO. For 
example, there are three types of 2-hop path between the entity 
<Norway> and the entity <Spain>. Specifically, 
<Norway>→<Midajah>←<Spain> is the first 2-hop path, 
<Norway>←<Germany>→<Spain> is the second 2-hop path and 
<Norway>→<France>→<Spain> is the third 2-hop path. The three 
types of path all contribute to the relatedness of <Norway> and 
<Spain>. CFEL only adopts the third 2-hop to measure the relatedness 
between <Norway> and <Spain>, ignoring the contribution of 
<Midajah> and <Germany> to the relatedness of <Norway> and 
<Spain>. Therefore, it is difficult for CFEL to accurately measure the 
relatedness of two entities. 

The longer the path between two entities is, the smaller the relat
edness of two entities is. Conversely, the more 2-hop path between two 

entities are, the greater the relatedness of two entities is. To accurately 
measure the relatedness of two entities, three types of 2-hop path and 1- 
hop paths (i.e., two candidate entities are directly connected by an edge) 
are adopted. Thus, an entity pair relatedness measurement model based 
on three 2-hop path is proposed in this paper, as given in Eq. (4). 

R
(
ei, ej

)
=

{
1 if

(
ei, r, ej

)
or
(
ej, r, ei

)

R2
(
ei, ej

)
otherwise (4)  

R2
(
ei, ej

)
=

1
lei ,ej

⋅

(
β⋅
( ⃒
⃒Bei ,ej

⃒
⃒+
⃒
⃒Tei ,ej

⃒
⃒
)
+ (1 − β)⋅

⃒
⃒Nei ,ej

⃒
⃒

|Nei | +
⃒
⃒Tei ,ej

⃒
⃒

+
β⋅
( ⃒
⃒Bej ,ei

⃒
⃒+
⃒
⃒Tej ,ei

⃒
⃒
)
+ (1 − β)⋅

⃒
⃒Nej ,ei

⃒
⃒

⃒
⃒Nej

⃒
⃒+
⃒
⃒Tej ,ei

⃒
⃒

)

(5)  

where R
(
ei, ej

)
is the relatedness measure function of two entities and 

R2
(
ei, ej

)
is the relatedness measure function based on 2-hop path. lei ,ej is 

the path length from ei to ej (here lei ,ej = 2). |Nei | denotes the number of 
entities pointed to by ei and 

⃒
⃒Nej

⃒
⃒ denotes the number of entities pointed 

Fig. 7. Relatedness sequences in a 4-order relatedness graph.  

Fig. 8. Three types of 2-hop path between two entities.  
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to by ej. 
⃒
⃒Bei ,ej

⃒
⃒ and 

⃒
⃒Tei ,ej

⃒
⃒ denote the number of the first type of 2-hop 

path and the second type of 2-hop path respectively, where 
⃒
⃒Bei ,ej

⃒
⃒ =

⃒
⃒Bej ,ei

⃒
⃒, 
⃒
⃒Tei ,ej

⃒
⃒ =

⃒
⃒Tej ,ei

⃒
⃒. 
⃒
⃒Nei ,ej

⃒
⃒ denotes the number of the third type of 2- 

hop path from ei to ej and 
⃒
⃒Nej ,ei

⃒
⃒ denotes the number of the third type of 

2-hop path from ej to ei. β is an adjustable hyperparameter that quan
tifies the relative importance of the directed 2-hop path with respect to 
the other two types of 2-hop path. 

If the relatedness between all entities is 0 through the entity pair 
relatedness measurement model (i.e., P

(
e1, e2,⋯, eq

)
= 0), which results 

in the value of the object Eq. (2) being 0 and renders it difficult to 
distinguish between multiple different candidate entity groups. To solve 
the above problem, a hyperparameter, γ, greater than 0 is added to Eq. 
(4). Then Eq. (4) can be expressed as Eq. (6). 

R
(
ei, ej

)
=

{
1 if

(
ei, r, ej

)
or
(
ej, r, ei

)

R2
(
ei, ej

)
+ γ otherwise (6)  

3.2.4. An overall semantic similarity model for entity mention group and 
candidate entity group 

To maintain the “collective linking” idea in the collective entity 
linking process, this section establishes a RotatE model to extract se
mantic information from HINs, and proposes an overall semantic simi
larity measurement model to accurately estimate the conditional 
probability (i.e., P

( (
m1,⋯,mq

) ⃒
⃒
(
e1,⋯, eq

) )
) of the entity mention 

group and the candidate entity group. 
CFEL assumes that an entity mention independently selects an entity 

in HINs when calculating P
( (

m1,⋯,mq
) ⃒
⃒
(
e1,⋯, eq

) )
, i.e., P

( (
m1,m2,⋯ 

,mq
)
|
(
e1, e2,⋯, eq

) )
=
∏|M|

i=1P(mi|ei). However, this assumption is not 
necessarily valid, since according to the logic of human language, entity 
mentions in a sentence are semantically related to each other. In fact, if 
the overall semantic similarity of the entity mention group and the 
overall semantic similarity of the candidate mention group are greater, 
the conditional probability P

( (
m1,⋯,mq

) ⃒
⃒
(
e1,⋯, eq

) )
is greater. 

Therefore, Eq. (7) is proposed to effective estimate the conditional 
probability. 

P
( (

m1,⋯,mq
) ⃒
⃒
(
e1,⋯, eq

) )
=
∏|M|

i=1
P(mi|ei)⋅Se

(
e1, e2,⋯, eq

)
⋅Se
(
m1,m2,⋯,mq

)

(7)  

where |M| denotes the size of entity mention set M and Se( ∗ ) is an 
overall semantic similarity function for the candidate entity group 

(
e1,

e2,⋯, eq
)

and the entity mention group 
(
m1,m2,⋯,mq

)
. Furthermore, 

P(mi|ei) indicates the probability that the entity mention mi selects the 
candidate entity ei. 

In entity linking, entity mention group is generally extracted from 
known texts or sentences. And its semantic similarity is strong. There
fore, the overall semantic similarity of the entity mention group is 
regarded as 1. To emphasize the overall semantic similarity of candidate 
entity group, the strong relatedness sequence is used to estimate the 
overall semantic similarity of the candidate entity group. Further, Eq. 
(8) is obtained through the simplification of Eq. (7). 

P
( (

m1,⋯,mq
) ⃒
⃒
(
e1,⋯, eq

) )
=
∏|M|

i=1
P(mi|ei)⋅Se

(
e1, e2,⋯, eq

)

=
∏|M|

i=1
P(mi|ei)⋅Tree2

(
e1, e2,⋯, eq

)

=
∏|M|

i=1
P(mi|ei)⋅

∑

(ei ,ej)∈Tree2(e1 ,e2 ,⋯,eq)

S
(
ei, ej

)

(8)  

where S
(
ei, ej

)
denotes the semantic similarity between entity ei and 

entity ej, and Tree2
(
e1, e2,⋯, eq

)
represents the overall semantic simi

larity of the strong relatedness sequence obtained by S
(
ei, ej

)
. The 

methods used to calculate P(mi|ei) and S
(
ei, ej

)
are described in detail 

below. 
Theoretically, P(mi|ei) can be calculated through word frequency. 

However, obtaining all web documents related to mi and ei is imprac
tical. On the one hand, the information of the entity ei and entity 
mention mi are constantly changing on the web. On the other hand, it is 
difficult to query the information of some entities and entity mentions 
on the web. Thus, the method based on word frequency cannot be 
directly used to calculate P(mi|ei). Actually, the higher the surface sim
ilarity between entity mention mi and candidate entity ei is, the higher 
P(mi|ei) is. To this end, the Levenshtein distance is adopted to calculate 
the similarity between the entity mention mi and the candidate entity ei, 
as given in Eq. (9). 

∏|M|

i=1
P(mi|ei) =

∏|M|

i=1
Lv(mi, ei)

Lv(mi, ei) = 1 −
lev(mi, ei)

max(|mi|, |ei| )

(9)  

where |mi| and |ei| denote the character length of mi and ei respectively. 
lev(mi, ei) denotes the Levenshtein distance between the entity mention 
mi and the candidate entity ei, and Lv(mi, ei) denotes the similarity be
tween the entity mention mi and the candidate entity ei. 

Next, the method to effectively obtain the semantic similarity (i.e., 
S
(
ei, ej

)
) between entity ei and entity ej is analyzes in detail. 

Currently, knowledge representation model has been greatly devel
oped, which can effectively learn the context information of entities and 
represent entities with semantic vectors. To effectively calculate the 
semantic similarity between candidate entities, an advanced knowledge 
representation model, RotatE (Sun et al., 2019), is adopted to learn the 
embedding representation of entities and relations in HINs. The rotation 
operation of the RotatE is illustrated in Fig. 9. Experimental results show 
that RotatE is effective in solving the complex relationship problems of 
knowledge graphs, including symmetric/antisymmetric, inversion and 
composition. Compared with traditional models such as TransE (Bordes 
et al., 2013), TransH (Wang et al., 2014), ComplEx (Trouillon et al., 
2016), and others, RotatE has superior performance in link prediction. 
Therefore, RotatE can capture the semantic features of entities and re
lations in HINs more fully, that is, the entity embedding vectors obtained 
using RotatE can represent the entities. (Fig. 10). 

According to the embedding vectors of entities, the semantic simi
larity between any two entities are quantified using cosine similarity or 
Euclidean distance, as expressed in Eq. (10). For example, under RotatE, 
the embedding vector of the entity “<1._FC_Köln>” is [0.012527352 
198958397,…,-0.0019661542028188705] + [-0.0177767332643 
2705,…,0.03048780746757984]i and the embedding vector of the en
tity “<1._FC_Saarbrücken>” is [0.013352576643228531,…,0.0019227 
27096825838] + [-0.01732955127954483,…,0.02603216655552 
3872]i. Then, the cosine similarity between the two entities is 0.215. 

S
(
ei, ej

)
= Sim

(
ei
→, ej
→) (10) 

Fig. 9. The framework of the RotatE.  

L. Zu et al.                                                                                                                                                                                                                                       



Expert Systems With Applications 238 (2024) 121759

10

where ei
→ denotes the embedding vector of the entity ei, and Sim

(
ei
→
, ej
→)

is the similarity function for calculating semantic similarity between the 
entity ei

→ and the entity ej
→, such as cosine similarity. 

3.2.5. Three representations of strong-relatedness-sequence-based fine- 
grained collective entity linking method 

Actually, the acquisition of entity relatedness and semantic infor
mation are both based on the structure of HINs. Consequently, it is 
generally difficult to distinguish between semantic similarity and 
relatedness. This means that Eq. (10) and Eq. (4) can be interchanged to 
some extent. Based on the entity pair relatedness measurement model 
and the semantic similarity measurement model, three representations 
of strong-relatedness-sequence-based fine-grained collective entity 
linking methods can be obtained, as given in Eqs. (11)–(13). 

arg max
e1∈E1 ,⋯,eq∈Eq

P
(
e1, e2,⋯, eq

)
× Se

(
e1, e2,⋯, eq

)
⋅
∏|M|

i=1
P(mi|ei)

= arg max
e1∈E1 ,⋯,eq∈Eq

Tree1
(
e1, e2,⋯, eq

)
× Tree1

(
e1, e2,⋯, eq

)
⋅
∏|M|

i=1
Lv(mi, ei)

(11)  

arg max
e1∈E1 ,⋯,eq∈Eq

P
(
e1, e2,⋯, eq

)
× Se

(
e1, e2,⋯, eq

)
⋅
∏|M|

i=1
P(mi|ei)

= arg max
e1∈E1 ,⋯,eq∈Eq

Tree1
(
e1, e2,⋯, eq

)
× Tree2

(
e1, e2,⋯, eq

)
⋅
∏|M|

i=1
Lv(mi, ei)

(12)  

arg max
e1∈E1 ,⋯,eq∈Eq

P
(
e1, e2,⋯, eq

)
× Se

(
e1, e2,⋯, eq

)
⋅
∏|M|

i=1
P(mi|ei)

= arg max
e1∈E1 ,⋯,eq∈Eq

Tree2
(
e1, e2,⋯, eq

)
× Tree2

(
e1, e2,⋯, eq

)
⋅
∏|M|

i=1
Lv(mi, ei)

(13)  

where Tree1
(
e1, e2,⋯, eq

)
denotes the overall relatedness of candidate 

entity group as measured by the strong relatedness sequence of 2-hop 
path, and Tree2

(
e1, e2,⋯, eq

)
represents the overall semantic similarity 

of candidate entity group as measured by the strong relatedness 
sequence of the semantic similarity. 

3.3. Analysis of algorithm time complexity 

In the implementation of SRSCL, the information of three types of 2- 
hop path is stored in a dictionary. According to the time complexity of 
dictionary query, the time complexity of three types of 2-hop path is 
O(1). Similarly, the time complexity of one type of 2-hop path is O(1) . 
Therefore, compared with the CFEL model, taking three types of 2-hop 
path into consideration does not increase the time complexity. Similar 
to the CFEL, the time complexity of SRSCL is mainly reflected in 
calculating the relatedness of candidate entity group. 

Given that the number of entity mentions in a sliding window is N, 
and the number of candidate entities for the ith entity mention is Mi, 
then a total of M1 ∗M2 ∗⋯ ∗MN entity mention groups is produced. 
According to the Prime algorithm in the maximum weight spanning tree, 
if the number of nodes in the graph is S, then the time complexity of the 
maximum weight spanning tree is O

(
S2). Therefore, if the number of 

entity mentions is N, the time complexity of calculating the overall 
relatedness or overall semantic similarity of an entity mention group is 
O
(
N2). Further, the time complexity of obtaining the optimal candidate 

entity group is O
(
M1 ∗M2 ∗⋯ ∗MN∗N2). According to the candidate 

entity pruning strategy, if the candidate entity is taken as top-k, the time 
complexity of obtaining the optimal candidate entity group is less than 

O
(

kN∗N2
)

. 

4. Experiment 

4.1. Experimental data 

To validate the effectiveness of the SRSCL proposed in this paper, 
part of the data in YAGO-Core is adopted as the HIN in entity linking, 
and AIDA CoNLL-YAGO, ACE2004 and AQUANT (Hoffart et al., 2011) 
are adopted as the datasets in entity linking. The detailed descriptions of 
the adopted HIN and datasets are as follows. 

The YAGO 3.1 dataset is downloaded and the YAGO-Core is regarded 
as the HIN in the experiment in this paper. Considering the large scale 
YAGO-Core, a part of YAGO-Core (J. Li et al., 2021) is adopted as the 
HIN for the entity linking experiment. Specifically, 10 K entities and 770 
K triples in the YAGO-Core are treated as the HIN in the experiment. 
Moreover, the public datasets AIDA CoNLL-YAGO, ACE2004 and 
AQUANT are employed to conduct the entity linking experiment on the 

Fig. 10. Subcategories division in YAGO.  
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above mentioned HIN. Specifically, AIDA CoNLL-YAGO contains 1393 
articles related to the topics of country, government, sports events, etc. 
ACE2004, developed by the Linguistic Data Consortium (LDC), consists 
of various types of text data in English, Chinese and Arabic. Lastly. And 
AQUANT is composed of text data from three English news networks, 
including the Xinhua News Agency (the People’s Republic of China), the 
New York Times News Agency and the Associated Press World Stream 
News Agency. 

The processed datasets are summarized in Table 1, which includes 
the number of entity mentions, the number of entity mentions that have 
the corresponding entities in the HIN, and the number of entity mentions 
that have candidate entities via the candidate entity generation method. 
For instance, the AIDA CoNLL-YAGO dataset contains 34,929 entity 
mentions, among which 20,228 have the corresponding entities in the 
HIN and 19,716 have candidate entities via the candidate entity gen
eration method. Consequently, only 20,228 entity mentions are 
employed in the collective entity linking experiment. 

In the experiment, the above public datasets are processed in this 
paper. Specifically, all entity mentions whose corresponding entities are 
not present in the constructed HIN are deleted. The processed datasets 
are summarized in Table 1, which includes the number of entity men
tions, the number of entity mentions that have the corresponding en
tities in the HIN, and the number of entity mentions that have candidate 
entities via the candidate entity generation method. For instance, the 
AIDA CoNLL-YAGO dataset contains 34,929 entity mentions, among 
which 20,228 have the corresponding entities in the HIN and 19,716 
have candidate entities via the candidate entity generation method. 

4.2. Experimental data preprocessing and sample generation 

This section processes the HIN and entity linking datasets employed 
in the experiment in order to carry out entity linking experiments. 
Specifically, it includes: (1) category annotations of entities in the HIN. 
(2) entity mention group generation as sample input for entity linking.  

(1) Category annotations of entities in the HIN 

In the experiment, the candidate entity set needs to be pruned 
through entity types. Therefore, the entities in the HIN are labeled with 
category labels. Based on the work of some predecessors and the entity 
classification method in the Reference(Kalender et al., 2017), entities 
are manually divided into 9 categories, including: “Animal”, “Concept”, 
“Creative work”, “Event”, “Location”, “Object”, “Organization”, “Per
son” and “Structure”. In fact, entities in the YAGO dataset already 
possess corresponding entity subcategory labels, such as “officeholder”, 
“ethnic group”, “person”, “mountain” and so on. Furthermore, the 
subcategories are divided into their respective categories. For example, 
“officeholder” is belong to “Person” and the type of the entity belonging 
to “officeholder” is labeled as “Person”. “ethnic group” is belong to 
“Organization” and the type of the entity belonging to “ethnic group” is 
labeled as “Organization”. Specifically, 1798 subcategories of entities 
are divided into 9 categories, as shown in Fig. 7. Eventually, “Animal”, 
“Concept”, “Creative work”, “Event”, “Location”, “Object”, “Organiza
tion”, “Person” and “Structure” contain 29, 195, 151, 149, 292, 239, 

236, 436 and 54 subcategories respectively.  

(2) Sample generation 

In general, the length of sliding window needs to be set to obtain the 
entity mention group in collective entity linking, whereby all entity 
mentions in a sliding window form an entity mention group. Conse
quently, collective entity linking is achieved by computing the related
ness of the entity mention group. An example of this extraction process is 
illustrated Fig. 11, where the sliding window is set to 10. The corre
sponding entity of the entity mention is identified in YAGO by using its 
“Wikipedia URL” and the type of the corresponding entity is used to 
represent the entity mention type. Finally, the entity mention group of 
the first sliding window is represented in Fig. 11. 

4.3. Model evaluation 

In the evaluation of entity linking models, precision, recall and F1 
score are typically used as metrics. However, when it comes to collective 
entity linking, the use of these metrics alone is not sufficient for effec
tively assessing the ability of the model to detect relatedness of candi
date entity group. To address this, this section proposes a M − k method 
for evaluating the model’s effectiveness in capturing the overall relat
edness of candidate entity group, in addition to precision, recall and F1 
score. 

In the experiment, precision, recall and F1 score are adopted to 
evaluate the performance of entity linking, which is shown in Eq. (14), 
Eq. (15) and Eq. (16) 

P =
correct link

processed mentions
(14)  

R =
correct link

total mentions
(15)  

F1 =
2⋅P⋅R
P+ R

(16)  

where correct link denotes the number of correctly linked entity men
tions, and processed mentions denotes the number of entity mentions that 
have candidate entities. The total mentions denotes the number of entity 
mentions used in the experiment. For example, processed mentions is 
19,716 and total mentions is 20,228 in AIDA CoNLL-YAGO. 

Collective entity linking focuses more on the performance of entity 
linking methods in capturing the overall relatedness of candidate entity 
group. However, there is a lack of evaluation methods to estimate the 
performance of collective entity linking methods in this regard. To 
address this issue, this paper proposes an evaluation method, called 
M − k (Mention-k) method. It is noteworthy that M − k is based on the 
number of entity mentions contained in the sliding window. Specifically, 
M − k first picks out entity mention groups whose number of entities 
with candidate entities is greater than k, then evaluates the effect of the 
collective entity linking method on these entity mention groups. Since 
the number of entity mentions with candidate entities in the sliding 
window is greater than 1, the relatedness between candidate entities of 
entity mentiones can be calculated. Finally, precision, recall rate and F1 
score are adopted to represent the entity linking accuracy in M − k, as 
shown in Eq. (17), Eq. (18) and Eq. (19). 

P =
correct link k

processed mentions k
(17)  

R =
correct link k

total mentions k
(18)  

F1 =
2⋅P⋅R
P+ R

(19) 

Table 1 
The processed datasets.  

Dataset The number 
of entity 
mentions 

The number of entity 
mentions that have the 
corresponding entities in 
the HIN 

The number of 
entity mentions that 
have candidate 
entities 

AIDA 
CoNLL- 
YAGO 

34,929 20,228 19,716 

AQUANT 727 186 180 
ACE 2004 257 125 124  
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where correct link k denotes the number of entity mentions correctly 
linked in M − k and processed mentions k denotes the number of entity 
mentions that have candidate entities in M − k. The total mentions k 
denotes the total number of entity mentions in M − k. 

4.4. Experiment results and analysis 

To validate the efficacy of the proposed SRSCL, comparative exper
iments of entity linking are conducted on three public datasets using the 
SRSCL and five baselines. In the experiments, precision, recall and F1 
score are adopted to evaluate the entity linking effectiveness, and M − k 
is adopted to evaluate the overall relatedness of the candidate entity 
group captured by the models. Therefore, this section is divided into two 
parts. The first part is to verify the efficacy of the SRSCL against the 
baselines on AIDA-CoNLL, YAGO, AQUANT and ACE2004 datasets. The 
second is to analyze the influence of different hyperparameters (e.g., β, 
γ, the size of candidate entity set and sliding window length.) on the 
entity linking performance of the SRSCL. 

4.4.1. Comparision experiment 
The comparison experiment is divided into two parts: the compari

son of the proposed SRSCL with the baselines with respect to entity 
linking effect, and the comparison of the proposed SRSCL with the 
baselines regarding their capability of capturing the overall relatedness 
of candidate entity group. 

(1) The comparison experiment in the entity linking effect 
In this paper, AIDA CoNLL-YAGO, AQUAINT and ACE2004 are uti

lized to evaluate the effectiveness of the proposed SRSCL model. Addi
tionally, SRSCL is compared with five entity linking methods/models, 
namely the classical entity popularity model (POP) (Shen, Han, et al., 
2014), the latest collective entity linking method (CFEL) (J. Li et al., 
2021), EMDD, TTHP, and CFELS. The details of each model/method for 
heterogeneous information network information extraction and overall 
relatedness capturing of candidate entity group are presented in Table 2. 
The POP model calculates the popularity of each entity by extracting 
degree information from the HIN and ranking the candidate entities 
accordingly. The CFEL model computes the relatedness between entities 
through the directed 2-hop path, representing the co-occurrence prob
ability between entities, and eventually completes the entity linking 
through a probability model. To further improve the relatedness mea
surement, the TTHP method utilizes three types of 2-hop path instead of 
the directed 2-hop path used in CFEL. Additionally, the EMDD model 
uses semantic vectors instead of the directed 2-hop path to measure the 
relatedness of entities. Finally, the CFELS achieves collective entity 
linking by introducing proposed strong relatedness sequence to CFEL. 

To verify the effectiveness of the SRSCL proposed in this paper, the 
most classical POP and the latest collective entity linking method CFEL 
are used as comparison methods. Furthermore, to verify the effective
ness of the proposed strong relatedness sequence, CFELS is adopted as a 
comparison method. Additionally, to verify the efficacy of the three 2- 
hop path defined in this paper, TTHP is adopted as a comparison 
method. Lastly, to validate that the knowledge representation learning 
introduced in this paper can effectively extract the semantic information 
of entities and relationships in the HIN, EMDD is utilized as a compar
ison method. In addition, the above three datasets are taken as valida
tion datasets and the HIN built in this paper is treated as the entity 
linking database. The precision, recall and F1 score of entity linking are 
taken as indicators to evaluate the effect of entity linking. The entity 
linking results of the baselines and the SRSCL on the aforementioned 
datasets are reported in Table 3. 

Table 3 illustrates that compared with the five baselines, the SRSCL 
achieves the best results on AIDA CoNLL-YAGO, ACE2004 and AQUA
INT (i.e., highest precision, highest recall and highest F1 score). Spe
cifically, compared with POP, CFEL, EMDD, TTHP and CFELS, the 
SRSCL improves the precision of AIDA CoNLL-YAGO by 0.3%-7.24%, 
with an average increase of 2.77%. Compared with POP, CFEL, EMDD, 
TTHP and CFELS, the SRSCL improves the recall of AIDA CoNLL-YAGO 
by 0.29%-6.9%, with an average increase of 2.64%. And compared with 
POP, CFEL, EMDD, TTHP and CFELS, SRSCL improves the F1 score of 
AIDA CoNLL-YAGO by 0.3%-7.07%, with an average increase of 2.71%. 
Significantly, CFEL, EMDD, TTHP, CFELS and SRSCL all employ one 
strategy or two strategies (i.e. 2-hop path or knowledge representation 
learning) to measure the semantic similarity or relatedness between 
entity pair. In contrast, POP model captures the features around entities 
through the adjacency matrix of entities, which is not able to utilize the 
information of relations between entities. Unsurprisingly, POP achieves 

Fig. 11. The entity mention group construction process for collective entity linking.  

Table 2 
Characteristic analysis of the proposed SRSCL and baseline models.  

Model/ 
Method 

Information extraction methods for HINs Overall relatedness 
capturing 

POP Adjacency matrix No 
CFEL Directed 2-hop path Cumulative entity pair 

relatedness 
EMDD Knowledge representation learning No 
TTHP Three types of 2-hop path No 
CFELS Directed 2-hop path Strong relatedness 

sequence 
SRSCL Directed 2-hop path and knowledge 

representation learning 
Strong relatedness 
sequence  
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the lowest entity link precision, recall and F1 score. The experimental 
results verify that the strategies of 2-hop path and knowledge repre
sentation learning can effectively extract the features of entities and 
relations. CFEL, EMDD and TTHP only use one of the two strategies to 
capture the features of entities, while the SRSCL adopts both strategies 
to capture the features of entities, making feature extraction more 
comprehensive. Therefore, the SRSCL achieves the best entity linking 
effect, which is consistent with the experimental results. Additionally, 
CFELS utilizes one type of 2-hop path to capture features around entities. 
The SRSCL, however, takes three types of 2-hop path and knowledge 
representation learning to capture features around entities. The exper
imental results verify that the three types of 2-hop path and knowledge 
representation learning model proposed in this paper can effectively 
extract the features of entities. 

On AQUAINT, POP model achieves the lowest entity link precision, 
recall and F1 score, while CFEL achieves the second-worst results. The 
results of the proposed SRSCL, EMDD, TTHP and CFELS are significantly 
better than those of CFEL. Among these models, the SRSCL achieves the 
best results. The SRSCL, EMDD, TTHP, and CFELS employ either three 
types of 2-hop path to extract the features of entities, or a knowledge 
representation learning model to extract the features of entities. 
Experimentally, compared to the directed 2-hop path, these methods are 
able to more effectively and comprehensively extract the information of 
the HIN. Consequently, compared with the POP and CFEL, the entity 
linking effect of the SRSCL is significantly improved. For example, the F1 
score of the SRSCL is 14.01% and 3.37% higher than that of the POP and 
CFEL, respectively. The experimental results verify the validity of the 
proposed SRSCL. 

In addition, the ACE2004 benchmark is also used to evaluate the 
performance of the proposed entity linking method. Specifically, the 
POP achieves the lowest entity link precision, recall and F1 score. The 
CFEL, EMDD and CFELS achieves the second-best entity link precision, 
recall and F1 score, while the SRSCL and TTHP achieve the best scores. 
The results demonstrate that, due to the sparse data in ACE2004, mul
tiple models yield similar entity linking effects. For instance, the preci
sion, recall and F1 scores of the SRSCL and TTHP are identical. Notably, 
the proposed SRSCL obtained the best entity linking results of all the 
methods compared in this paper. This indicates the efficacy of the SRSCL 
in utilizing the information in HIN, and validates its effectiveness in 
entity linking. 

The experimental results presented above show that the SRSCL 
proposed in this paper has attained the best entity linking effect on the 
three datasets (i.e., on ACE2004 and AQUAINT with sparse data, as well 
as on AIDA CoNLL-YAGO with dense data). Therefore, the SRSCL pro
posed in this paper is demonstrated to be highly effective for entity 
linking tasks. 

The CFEL, EMDD, TTHP, CFELS, and SRSCL are members of the same 
family of entity linking methods. To verify the validity of the three types 
of 2-hop path, knowledge representation learning and strong relatedness 
sequence proposed in this paper, a comparison of the EMDD, TTHP, 

CFELS and SRSCL with CFEL is conducted. The precision and F1 score of 
the entity linking methods on the three datasets are illustrated in Fig. 12 
and Fig. 13 respectively. 

TTHP outperforms CFEL in precision and F1 score on the three 
datasets, especially on AIDA CoNLL-YAGO (as shown in Fig. 12 and 
Fig. 13). This is attributed to the fact that TTHP considers three types of 
2-hop path to measure the relatedness between entity pair, whereas 
CFEL only uses one type of 2-hop path (i.e., directed 2-hop path). The 
experimental results verify that the three types of 2-hop path can more 
comprehensively extract the features of entities, which significantly 
improves the effect of entity linking. The precision and F1 score of 
EMDD on AIDA CoNLL-YAGO are basically the same as those of CFEL. 
This may be due to the limitation of the current knowledge represen
tation learning, and the ability of the knowledge representation learning 
model to extract the deep features of entities needs to be improved. 
Interestingly, EMDD significantly outperforms CFEL in precision and F1 
score on AQUAINT. This suggests that the knowledge representation 
learning can improve the entity linking effect of sparse data compared 
with the directed 2-hop path. It is also observed that CFELS achieves 
comparable performance with CFEL on the three datasets, with a sig
nificant advantage on AQUAINT, where the precision and F1 score of 
CFELS are significantly better than CFEL. This verifies that the strong 
relatedness sequence can effectively mine the relatedness among muti
ple entities, thereby significantly improving the effect of entity linking. 

The SRSCL integrates the three types of 2-hop path, knowledge 
representation learning and strong relatedness sequence. Theoretically, 
the SRSCL is expected to achieve the best entity linking effect. This 
expectation is further confirmed by the empirical results shown in 
Fig. 12 and Fig. 13. In these figures, it is evident that the SRSCL out
performs the latest CFEL in terms of precision and F1 score on the three 
datasets. The results thus demonstrate the validity of the proposed 
SRSCL for entity linking. 

Table 3 
The entity linking results of the baselines and the SRSCL.  

Model/Method POP CFEL EMDD TTHP CFELS SRSCL 

AIDA CoNLL-YAGO P(%)  74.99  80.21  79.96  81.93  80.21  82.23 
R(%)  71.39  76.36  76.12  78.00  76.36  78.29 
F1(%)  73.15  78.24  77.99  79.92  78.24  80.22  

ACE2004 P(%)  83.87  89.52  89.52  90.32  89.52  90.32 
R(%)  83.87  89.52  89.52  90.32  89.52  90.32 
F1(%)  83.87  89.52  89.52  90.32  89.52  90.32  

AQUAINT P(%)  75.71  86.44  88.70  86.75  88.14  89.83 
R(%)  74.44  85.00  87.22  85.06  86.67  88.33 
F1(%)  75.07  85.71  87.96  85.90  87.40  89.08  

Fig. 12. The comparison results of entity linking precision.  
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On the one hand, the main advantage of the SRSCL is to mine the 
overall relatedness of candidate entity group. On the other hand, the 
overall relatedness of candidate entity group of entity mentioned can be 
calculated when the number of entity mentions in the sliding window is 
greater than 1. To evaluate the performance of the SRSCL in capturing 
the overall relatedness of candidate entity group, the M − k method is 
employed, which is illustrated in the following description. 

(2) The comparison experiment in capturing the overall relatedness 
of candidate entity group 

To measure the performance of the entity linking methods in 
capturing the overall relatedness of candidate entity group, the M − k 
method is adopted to estimate the experimental results on AIDA CoNLL- 
YAGO. Specifically, M − 1, M − 2, M − 3, M − 4, M − 5 and M − 6 are 
adopted to estimate the performance of the entity linking methods, 
where M − k denotes that the number of entity mentions that have 
candidate entities in a sliding window, being greater than k. Finally, the 
entity linking results on M − k are evaluated through precision, recall 
and F1 score. The experimental results are presented in Table 4. 

Table 4 illustrates that the recall and F1 score of the four entity 
linking methods are positively correlated with the precision, i.e., the 
higher the precision is, the higher the recall is, and the higher the F1 
score is. This suggests that the precision can be used as a representative 
indicator to evaluate the effect of entity linking in the experiments. To 
intuitively compare the entity linking performance of POP, CFEL, CFELS 
and SRSCL on M − k, the entity linking precisions of the four methods are 
presented in Fig. 14. 

The SRSCL significantly outperforms the POP, CFEL and CFELS on 
M − 1-M − 6, as evidenced by Table 4 and Fig. 14. CFELS achieves the 

second-highest entity linking precision on M − 1-M − 6. CFEL and POP 
achieve the third and fourth best results on M − 1-M − 6, respectively. 
Compared with POP, CFEL demonstrates lower precision on M − 6, 
indicating that it is difficult for CFEL to capture the overall relatedness of 
the candidate entity group when the number of entity mentions is large. 
In contrast, POP, which uses adjacency matrix, is able to effectively 
capture the overall relatedness of the candidate entity group. It is worth 
noting that the SRSCL and CFELS are outperforms POP and CFEL 
significantly on M − 1-M − 6. The experimental results demonstrate that 
the SRSCL and CFELS proposed in this paper are capable of capturing the 
overall relatedness of candidate entity group regardless of the number of 
entity mentions. The results confirm the effectiveness of the strong 
relatedness sequence, three types of 2-hop path and knowledge repre
sentation learning proposed or introduced in this paper for capturing the 
overall relatedness of candidate entity group. 

Compared with CFEL, the precisions of CFELS on M − 1-M − 6 are 
improved by 0.35%, 0.52%, 0.22%, 1.22%, 1.63% and 2.09%, respec
tively. The experimental results show that the entity linking precision by 
CFELS increases with the number of entity mentions in the sliding 
window, indicating that the strong relatedness sequence can effectively 
capture the overall relatedness of candidate entity group, especially 
when there are many entity mentions in the sliding window. In com
parison, the precisions of the SRSCL on M − 1-M − 6 are improved by 
3.00%, 3.46%, 4.41%, 5.97%, 7.33% and 8.61%, illustrating that the 
three types of 2-hop path, knowledge representation learning can 
effectively improve the performance of entity linking method in 
capturing the overall relatedness of candidate entity group. Notably, the 
precisions of the SRSCL on M − 1-M − 6 are improved by 3.35%, 3.98%, 
4.63%, 7.19%, 8.96% and 10.70% compared with CFEL. The experi
mental results show that the precision of the SRSCL is significantly 
improved with the increase of the number of entity mentions in the 
sliding window, as illustrated in Fig. 14. 

To further verify the performance of the SRSCL in capturing the 
overall relatedness of candidate entity group, comparison experiments 
are conducted on other two datasets, AQUAINT and ACE2004. Due to 
sparse data in these datasets, the number of entity mentions in the 
sliding window is small. Consequently, the comparison experiments are 
only made on M − 1 and M − 2, the results of which are shown in Table 5. 

The results of the experiments conducted on the AQUAINT and 
ACE2004 datasets show that the strong relatedness sequence and the 
SRSCL can effectively capture the overall relatedness of candidate entity 
group, thus performing better than the CFEL, CFELS, and POP in terms of 
precision, recall and F1 score. This is evidenced in the results presented 
in Table 5. Specifically, on M − 1 of AQUAINT, the SRSCL significantly 
outperforms CFELS, CFEL and POP in precision, recall and F1 score, and 
the CFELS outperforms CFEL in precision, recall and F1 score. The re
sults indicate that the strong relatedness sequence and SRSCL can 

Fig. 13. The comparison results of entity linking F1 score.  

Table 4 
The performance comparison results in capturing the overall relatedness of 
candidate entity group.  

M − k M − 1 M − 2 M − 3 M − 4 M − 5 M − 6 

POP P(%)  74.85  73.60  72.53  69.66  66.58  65.58 
R(%)  73.80  72.84  72.06  69.21  66.22  65.28 
F1(%)  74.32  73.22  72.29  69.44  66.40  65.43  

CFEL P(%)  80.90  80.64  78.90  74.48  68.21  62.56 
R(%)  79.76  79.81  78.39  74.00  67.84  62.27 
F1(%)  80.32  80.23  78.64  74.24  68.02  62.41  

CFELS P(%)  81.25  81.16  79.12  75.70  69.84  64.65 
R(%)  80.11  80.32  78.60  75.21  69.46  64.35 
F1(%)  80.68  80.74  78.86  75.46  69.65  64.50  

SRSCL P(%)  84.25  84.62  83.53  81.67  77.17  73.26 
R(%)  83.06  83.75  82.99  81.14  76.76  72.92 
F1(%)  83.65  84.19  83.26  81.40  76.96  73.09  

Fig. 14. Entity linking precisions of the POP, CFEL, CFELS and SRSCL on M − k.  
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effectively capture the overall relatedness of candidate entity group. On 
M − 2, POP achieves the worst results, while the performance of other 
methods is comparable. This could be attributed to the sparse data of 
AQUAINT, which might lead to similar entity linking behaviour of 
multiple entity linking methods. Similarly, on M − 1 of ACE2004, the 
SRSCL and CFELS significantly outperform CFEL and POP. However, on 
M − 2, POP achieves the best results, while the other methods achieve 
the second best results, which may be due to the sparsity of data and the 
fewer data samples available in ACE2004. The experimental results on 
AQUAINT and ACE2004 demonstrate that the strong relatedness 
sequence and SRSCL can effectively capture the overall relatedness of 
candidate entity group, leading to greater effectiveness of the SRSCL in 
entity linking. These experimental conclusions on AQUAINT and 
ACE2004 are consistent with those obtained from AIDA CoNLL-YAGO. 

To conclude, the proposed SRSCL is more effective than the classical 
POP model and the latest CFEL method in capturing the overall relat
edness of candidate entity group. Its effectiveness is especially notable 
when the number of entity mentions is large in one sliding window, 
significantly improving the success rate of collective entity linking. 
Therefore, the SRSCL can effectively realize the task of collective entity 
linking. 

4.4.2. Discussion of the influence of different hyperparameters on the 
performance of the SRSCL 

This section focuses on discussing the effects of the hyperparameters 
of SRSCL on collective entity linking performance. The SRSCL method 
introduces the semantic similarity of entities. Therefore, semantic vec
tors of entities in HIN are first obtained by the RotatE model. Subse
quently with the semantic vectors fixed, the effects of the 
hyperparameters of the SRSCL model and the three SRSCL computation 
methods proposed in Section 3.2.5 assessed in terms of collective entity 
linking performance.. 

In the proposed SRSCL, the RotatE model is first adpoted to learn the 
embedding vector for each entity to obtain the semantic representation. 
The YAGO-Core fact triples are utilized to train the RotatE, where the 
size of the training set is 770 k, the size of the validation set is 8000 and 
the size of the test set is 8000. In experiment, when batch_size = 4800 (i. 
e., the hyperparameter that controls the size of the training batch), 
embedding_dimension = 512 (i.e., the entity and relation embedding 
dimension), fixed_margin = 6.0 (i.e., the fixed distance threshold used in 
the Rotate model that determines whether entities have a relation or 
not), train_times = 3000 (i.e., the hyperparameter that controls the 
training epoch) and self-adversarial_sampling_temperature = 2e-4 (i.e., 
the probability hyperparameter for extracting negative triplets), the 

RotatE obtains a good performance with the hits@10 (filter) of 0.8869. 
Hence, the entity embedding vector learned from the RotatE, with the 
above hyperparameters, can effectively capture the semantic informa
tion of the entity. Then, the influence of different hyperparameters on 
the performance of the SRSCL is discussed using the AQUAINT, as 
described below. 

According to Eq. (11), Eq. (12) and Eq. (13), three different repre
sentations of SRSCL are presented, namely SRSCL-11, SRSCL-12, and 
SRSCL-13. The objective of this section is to obtain the optimal SRSCL. 
The hyperparameters that have a significant impact on the performance 
of SRSCL include β, γ, the size of candidate entity set (i.e., top-k), the 
length of the sliding window (denoted as l). By default, the SRSCL-12 is 
selected as the optimal SRSCL, and the hyperparameters is set to β =
0.5, γ = 0.1, top-k = top-10 and l = 15. 

(1) The influence of β and γ on the performance of the SRSCL 
First, the size of candidate entity set and the length of the sliding 

window are set to the default values. Based on experience and knowl
edge, the optimization range of β and γ are established as follows: β ∈
[0.3, 0.4,0.5, 0.6, 0.7] and γ ∈ [0.1, 0.2, 0.3,0.4, 0.5]. Subsequently, the 
set hyperparameters are used to optimize the SRSCL-11, SRSCL-12 and 
SRSCL-13 respectively to select the optimal calculation strategy. 

The experimental results of the SRSCL-11, SRSCL-12 and SRSCL-13 
with different hyperparameters are shown in Table 6. Since β and γ 
are not included in the SRSCL-13, the results of the SRSCL-13 remain 
unchanged under different hyperparameters, as shown in Table 5. When 
β = 0.3 and γ = 0.4, the SRSCL-11 achieves better precision, recall and 
F1 score. When β = 0.3 and γ = 0.4, the SRSCL-12 achieves better 
precision, recall and F1 score. Among multiple hyperparameters, the 
SRSCL-11 and SRSCL-12 obtain better results when β = 0.3. The results 
illustrate that the other two types of 2-hop path proposed in this paper 
have an importance of 0.7, which verifies the effectiveness of the three 
types of 2-hop path proposed in this paper. 

Table 6 demonstrates that the SRSCL-12 outperforms the SRSCL-11 
and SRSCL-13 in terms of precision, recall and F1 score. Specifically, 
the precision, recall and F1 score of the SRSCL-12 are 2.82%, 2.77%, and 
2.81% higher than those of the SRSCL-11, respectively. The difference 
between the SRSCL-12 and SRSCL-11 is that the former calculates se
mantic similarity using semantic vectors, whereas the latter utilizes 
three types of 2-hop path to estimate semantic similarity. Comparing the 
SRSCL-12 with SRSCL-11, a conclusion can be drawn that knowledge 
representation learning is more effective in capturing semantic infor
mation of entities in comparison with three types of 2-hop path. In 
addition, the results of the experiments demonstrate that the SRSCL-12 
outperforms the SRSCL-13 in terms of precision, recall, and F1 score. 
This is due to the difference in the approaches taken by the two algo
rithms: while the SRSCL-12 uses three types of 2-hop path to calculate 
the relatedness between the entity pair, the SRSCL-13 employs the 
knowledge representation learning to estimate the relatedness. The 
findings suggest that the relatedness between the entity pair can be 
effectively measured through the three types of 2-hop path, rather than 
through knowledge representation learning. In fact, semantic similarity 
may pay more attention to the meaning of entities in all contexts, while 
the relatedness may be more focus on the local characteristics between 
entity pair. Therefore, the three types of 2-hop path is more effective in 
measuring the relatedness between entity pair, and the knowledge 
representation learning is more effective in measuring the semantic 
similarity between entities. From above analysis, the SRSCL-12 not only 
captures the semantic information of entities through the knowledge 
representation learning effectively, but also captures the relatedness of 
entity pair through the three types of 2-hop path. As such, the SRSCL-12 
can be considered the most effective entity linking method among the 
three SRSCL methods. 

Table 6 illustrates that the SRSCL-12 outperforms SRSCL-11 and 
SRSCL-13 in the performance of entity linking. Therefore, the SRSCL-12 
is selected as the optimal SRSCL, and β is set to 0.3 and γ is set to 0.4. 
Then the size of candidate entity set and the length of the sliding window 

Table 5 
The comparison results in capturing the overall relatedness of candidate entity 
group.  

Dataset AQUAINT ACE2004 

M − 1 M − 2 M − 1 M − 2 

POP P  74.47%  44.44%  82.93%  100.00% 
R  74.47%  44.44%  82.93%  100.00% 
F1  74.47%  44.44%  82.93%  100.00%  

CFEL P  78.72%  66.67%  87.80%  86.67% 
R  78.72%  66.67%  87.80%  86.67% 
F1  78.72%  66.67%  87.80%  86.67%  

CFELS P  85.11%  66.67%  90.24%  86.67% 
R  85.11%  66.67%  90.24%  86.67% 
F1  85.11%  66.67%  90.24%  86.67%  

SRSCL P  91.49%  66.67%  90.24%  86.67% 
R  91.49%  66.67%  90.24%  86.67% 
F1  91.49%  66.67%  90.24%  86.67%  
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are optimized as follows. 
(2) The influence of the size of candidate entity set on the perfor

mance of the SRSCL 
To investigate the effect of the size of candidate entity set on the 

SRSCL, three sizes of candidate entity set are evaluated: top-10, top-15 
and top-20. The results, depicted in Fig. 15, show that the precision of 
the SRSCL-12 remained unchanged for the three sizes of the candidate 
entity set. Additionally, note that the larger the size of candidate entity 
set is, the higher the complexity of the SRSCL-12 is. Consequently, the 
size of candidate entity set is set to top-10. 

To further verify the effectiveness of the candidate entity generation 
method and the rationality of setting the size of candidate entity set as 
top-10, experiments are repeated on the SRSCL-11 and the results are 
shown in Fig. 16. As can be observed, the entity linking precision of the 
SRSCL-11 gradually decreases with the size of the candidate entity set 
ranging from top-10 to top-20. This indicates that, when the size of 

candidate entity set is increased, the noise of the candidate entities is 
increased in tandem. Moreover, the presence of candidate entities un
related to the entity mention interferes with the correct entity linking, 
thus resulting in a decrease in the entity linking precision of the SRSCL- 
11. These results demonstrate that a small number of candidate entities 
can achieve a higher entity linking precision, thereby verifying the 
effectiveness of the proposed candidate entity generation method and 
justifying the choice to set the size of candidate entity set to top-10 in 
this paper. 

(3) The influence of the length of the sliding window on the per
formance of the SRSCL 

To investigate the influence of the length of the sliding window on 
the performance of the SRSCL, l is set to 10, 15, 20 and other hyper
parameter settings are fixed. The precision, recall and F1 score of the 
SRSCL-12 under different sliding window lengths are illustrated in 
Fig. 17. 

Table 6 
The results of the SRSCL with different hyperparameters.  

Number β γ SRSCL-11 SRSCL-12 SRSCL-13 

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) 

1  0.3  0.1  86.44  85.00  85.71  89.27  87.78  88.52  89.27  87.78  88.52 
2  0.3  0.2  87.01  85.56  86.27  89.27  87.78  88.52  89.27  87.78  88.52 
3  0.3  0.3  87.01  85.56  86.27  89.83  88.33  89.08  89.27  87.78  88.52 
4  0.3  0.4  87.01  85.56  86.27  89.83  88.33  89.08  89.27  87.78  88.52 
5  0.3  0.5  87.01  85.56  86.27  88.70  87.22  87.96  89.27  87.78  88.52 
6  0.4  0.1  84.75  83.33  84.03  89.27  87.78  88.52  89.27  87.78  88.52 
7  0.4  0.2  87.01  85.56  86.27  89.27  87.78  88.52  89.27  87.78  88.52 
8  0.4  0.3  87.01  85.56  86.27  89.27  87.78  88.52  89.27  87.78  88.52 
9  0.4  0.4  86.44  85.00  85.71  88.70  87.22  87.96  89.27  87.78  88.52 
10  0.4  0.5  87.01  85.56  86.27  88.70  87.22  87.96  89.27  87.78  88.52 
11  0.5  0.1  84.75  83.33  84.03  89.27  87.78  88.52  89.27  87.78  88.52 
12  0.5  0.2  87.01  85.56  86.27  89.27  87.78  88.52  89.27  87.78  88.52 
13  0.5  0.3  87.01  85.56  86.27  89.27  87.78  88.52  89.27  87.78  88.52 
14  0.5  0.4  86.44  85.00  85.71  88.70  87.22  87.96  89.27  87.78  88.52 
15  0.5  0.5  86.44  85.00  85.71  88.70  87.22  87.96  89.27  87.78  88.52 
16  0.6  0.1  85.31  83.89  84.59  89.27  87.78  88.52  89.27  87.78  88.52 
17  0.6  0.2  85.31  83.89  84.59  89.27  87.78  88.52  89.27  87.78  88.52 
18  0.6  0.3  86.44  85.00  85.71  88.14  86.67  87.39  89.27  87.78  88.52 
19  0.6  0.4  86.44  85.00  85.71  88.70  87.22  87.96  89.27  87.78  88.52 
20  0.6  0.5  85.88  84.44  85.15  88.70  87.22  87.96  89.27  87.78  88.52 
21  0.7  0.1  85.31  83.89  84.59  89.27  87.78  88.52  89.27  87.78  88.52 
22  0.7  0.2  84.75  83.33  84.03  88.14  86.67  87.39  89.27  87.78  88.52 
23  0.7  0.3  86.44  85.00  85.71  88.14  86.67  87.39  89.27  87.78  88.52 
24  0.7  0.4  85.88  84.44  85.15  88.14  86.67  87.39  89.27  87.78  88.52 
25  0.7  0.5  85.88  84.44  85.15  88.70  87.22  87.96  89.27  87.78  88.52  

Fig. 15. The entity linking precisions of the SRSCL-12 on different sizes of 
candidate entity sets. (The precisions of top-10, top-15 and top-20 are same). 

Fig. 16. The entity linking precisions of the SRSCL-11 on different sizes of 
candidate entity sets. 
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Generally, the number of entity mentions in the sliding window in
creases as the length of sliding window increases. Fig. 17 demonstrates 
that the precision, recall and F1 score of the SRSCL-12 rise steadily when 
the sliding window is set from 10 to 15. This indicates that the SRSCL-12 
can effectively capture the overall relatedness of candidate entity group, 
leading to an improvement in the entity linking effect with an increase in 
the length of the sliding window. However, the precision, recall and F1 
score of the SRSCL-12 decrease gradually when the sliding window is set 
from 15 to 20. This may be attributed to the fact that when describing a 
thing, the keywords that are closer to the central words tend to be more 
relevant to the thing, whereas those that are farther away tend to be less 
relevant. Therefore, when the number of entity mentions in the sliding 
window is continuously increased, it will introduce more unrelated 
entity mentions and, consequently, more noise to the entity linking 
process, leading to a degraded performance of entity linking. Based on 
the aforementioned analysis, the SRSCL can obtain an optimal entity 
linking effect when the length of the sliding window is set to 15. 

In conclusion, the SRSCL-12 demonstrates the best entity linking 
performance when the hyperparameter β is set to 0.3, γ is set to 0.4, the 
size of candidate entities set is set to top-10 and the length of the sliding 
window is set to 15. 

5. Conclusions 

The collective entity linking for heterogeneous information networks 
has been a long-standing challenge in the application of such networks. 
An in-depth analysis of the latest collective entity linking method, CFEL, 
reveals three key unsolved issues. To address these issues, this paper 
proposes a strong-relatedness-sequence-based fine-grained collective 
entity linking method (SRSCL) for heterogeneous information networks. 
First, in view of the fact that the CFEL does not fully follow the “col
lective linking” idea in solving the objective function, SRSCL introduces 
a knowledge representation learning model and proposes an overall 
semantic similarity model for entity mention group and candidate entity 
group to closely adhere to the “collective linking” idea. Second, to 
address the difficulty of CFEL in highlighting the importance of strong 
logical associations in measuring the overall relatedness of candidate 
entity group, SRSCL proposes the concept of strong relatedness 
sequence, and a strong-relatedness-sequence-based overall relatedness 
measurement model for candidate entity group. Third, aiming at the 
problem that CFEL only uses one types of 2-hop path to measure entity 
relatedness, SRSCL defines three types of 2-hop path and considers the 
contribution of each path to entity relatedness. Accordingly, an entity 
pair relatedness measurement model based on three 2-hop path is 
investigated to accurately measure entity relatedness. In addition, this 
paper establishes a M − k method to evaluate the performance of col
lective entity linking in capturing the overall relatedness of candidate 
entity group. Finally, the effectiveness of the SRSCL is validated by a 
series of experiments. Experimental results show that the proposed 

SRSCL in this paper improves the precision, recall and F1 score by 10.7% 
in comparison with the latest model when the number of entity mentions 
contained in the sliding window is greater than 6. 

In this paper, the proposed SRSCL relies on categories of entity 
mention and entity, thus making it difficult to effectively implement 
entity linking without category information. Consequently, future 
research should be devoted to methods for predicting categories of en
tity mention and entity. Furthermore, the time complexity of the algo
rithm should also be addressed. To this end, we plan to focus on 
improving the efficiency of entity linking, with the ultimate goal of 
applying our proposed entity linking method to larger heterogeneous 
information networks. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The data that has been used is confidential. 

Acknowledgments 

This work was funded by National Natural Science Foundation of 
China [No. U2133202], the Fellowship of China Postdoctoral Science 
Foundation [No. 2022M720955] and the Fellowship of Heilongjiang 
Province Postdoctoral Science Foundation [No. LBH-Z22187]. 

References 

Akabe, K., Takeuchi, T., Aoki, T., & Nishimura, K. (2021). Information retrieval on 
oncology knowledge base using recursive paraphrase lattice. Journal of Biomedical 
Informatics, 116, Article 103705. 

Biggs, N. (2002). Discrete mathematics. Oxford University Press.  
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). 

Translating embeddings for modeling multi-relational data. Advances in Neural 
Information Processing Systems, 26. 

Chong, W.-H., Lim, E.-P., & Cohen, W. (2017). Collective entity linking in tweets over 
space and time. Advances in Information Retrieval: 39th European Conference on IR 
Research, ECIR 2017, Aberdeen, UK, April 8-13, 2017, Proceedings 39. 

Daiber, J., Jakob, M., Hokamp, C., & Mendes, P. N. (2013). Improving efficiency and 
accuracy in multilingual entity extraction. Proceedings of the 9th international 
conference on semantic systems. 

Ganea, O.-E., Ganea, M., Lucchi, A., Eickhoff, C., & Hofmann, T. (2016). Probabilistic 
bag-of-hyperlinks model for entity linking. Proceedings of the 25th International 
Conference on World Wide Web. 

Geng, Z., Chen, G., Han, Y., Lu, G., & Li, F. (2020). Semantic relation extraction using 
sequential and tree-structured LSTM with attention. Information Sciences, 509, 
183–192. 

Hoffart, J., Seufert, S., Nguyen, D. B., Theobald, M., & Weikum, G. (2012). KORE: 
keyphrase overlap relatedness for entity disambiguation. Proceedings of the 21st 
ACM international conference on Information and knowledge management. 

Hoffart, J., Yosef, M. A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M., . . . Weikum, 
G. (2011). Robust disambiguation of named entities in text. Proceedings of the 2011 
conference on empirical methods in natural language processing. 

Huang, Z., Zheng, Y., Cheng, R., Sun, Y., Mamoulis, N., & Li, X. (2016). Meta structure: 
Computing relevance in large heterogeneous information networks. Proceedings of 
the 22nd ACM SIGKDD International conference on knowledge discovery and data 
mining. 

Kalender, M., Korkmaz, E. E., & Engineering, D. (2017). THINKER-entity linking system 
for Turkish language. IEEE Transactions on Knowledge and Data Engineering, 30(2), 
367–380. 

Li, C., & Tian, Y. (2020). Downstream model design of pre-trained language model for 
relation extraction task. arXiv preprint arXiv:.03786. 

Li, J., Bu, C., Li, P., & Wu, X. (2021). A coarse-to-fine collective entity linking method for 
heterogeneous information networks. Knowledge-Based Systems, 228, Article 107286. 

Li, Z., Zhao, Y., Li, Y., Rahman, S., Wang, F., Xin, X., & Zhang, J. (2021). Fault 
localization based on knowledge graph in software-defined optical networks. Journal 
of Lightwave Technology, 39(13), 4236–4246. 

Liu, M., Gong, G., Qin, B., & Liu, T. (2019). A multi-view-based collective entity linking 
method. ACM Transactions on Information Systems, 37(2), 1–29. 

Nasar, Z., Jaffry, S. W., & Malik, M. K. (2021). Named entity recognition and relation 
extraction: State-of-the-art. ACM Computing Surveys, 54(1), 1–39. 

Fig. 17. Entity linking results of the SRSCL-12 under different sliding win
dow lengths. 

L. Zu et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0957-4174(23)02261-3/h0005
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0005
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0005
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0010
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0015
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0015
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0015
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0035
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0035
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0035
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0055
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0055
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0055
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0065
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0065
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0070
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0070
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0070
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0075
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0075
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0080
http://refhub.elsevier.com/S0957-4174(23)02261-3/h0080


Expert Systems With Applications 238 (2024) 121759

18

Oliveira, I. L., Fileto, R., Speck, R., Garcia, L. P., Moussallem, D., & Lehmann, J. (2021). 
Towards holistic entity linking: Survey and directions. Information Systems, 95, 
Article 101624. 

Onoe, Y., & Durrett, G. (2020). Fine-grained entity typing for domain independent entity 
linking. Proceedings of the AAAI Conference on Artificial Intelligence. 

Ravi, M. P. K., Singh, K., Mulang, I. O., Shekarpour, S., Hoffart, J., & Lehmann, J. (2021). 
CHOLAN: A modular approach for neural entity linking on Wikipedia and Wikidata. 
Proceedings of the 16th Conference of the European Chapter of the Association for 
Computational Linguistics: Main Volume. 
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