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A B S T R A C T

Biomedical Entity Linking (BEL) is the task of mapping of spans of text within biomedical documents to
normalized, unique identifiers within an ontology. This is an important task in natural language processing
for both translational information extraction applications and providing context for downstream tasks like
relationship extraction. In this paper, we will survey the progression of BEL from its inception in the late 80s
to present day state of the art systems, provide a comprehensive list of datasets available for training BEL
systems, reference shared tasks focused on BEL, discuss the technical components that comprise BEL systems,
and discuss possible directions for the future of the field.
1. Introduction

Biomedical entity linking (BEL), also known as normalization or
grounding, is a natural language processing (NLP) task dealing with the
mapping of spans of text within biomedical documents to normalized,
unique identifiers within an ontology. Associating these spans, known
as mentions, with a discrete concept allows information extracted from
the text to be easily filtered and aggregated. In this paper, we will
survey the progression of BEL from its inception in the late 80 s to
present day state of the art systems, provide a comprehensive list
of datasets available for training BEL systems, reference shared tasks
focused on BEL, describe the technical components that comprise BEL
systems, and discuss where the field needs to go from here.

To conduct this systematic review, we queried PubMed for all full-
text articles published between 1980 and August 2022 which contained
any of the phrases ‘‘entity linking’’, ‘‘entity normalization’’, ‘‘concept
linking’’, or ‘‘concept normalization’’ in the abstract or title. This search
yielded 134 results, of which, the earliest was published in 1985. We
retrieved 132 of these for further review, excluding two results which
corresponded to a book chapter and a corrigendum. After review, we
excluded another 72 results for reasons such as the abstract or title
incidentally containing one of the search phrases without referring to
the NLP task (40), the primary focus of the paper being a pipeline
which includes a non-novel BEL component (19), the paper mentioning
entity linking in passing (11), the paper being a review which did not
introduce any original contributions (3), and the paper focusing on
non-biomedical applications of entity linking (2). A PRISMA diagram
showing how we filtered the results of our search is shown in Fig. 1.
We have included some additional publications related to biomedical
entity linking in the following sections which were not included in the
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PubMed results, but which we felt had substantively contributed to the
field.

2. History

2.1. Early work

In the late 1980’s, medical literature was expanding rapidly, but
physicians were unable to search it effectively due to unfamiliarity
with the Medical Subject Headings (MeSH) vocabulary used to index
citations in the MEDLINE database [1]. This impediment motivated
the initial work on BEL. To improve search efficacy for non-expert
users, two physicians at Massachusetts General Hospital proposed Mi-
croMeSH in 1987, an ‘‘intelligent search assistant’’ for searching the
MEDLINE database, which used a synonym, acronym, and abbreviation
dictionary to map users’ search queries to a list of possible MeSH
terms with wildcard matching [1]. The idea was later expanded to
facilitate the MeSH indexing of articles directly with systems such as
CLARIT (1991) [2], SAPHIRE (1995) [3], OSCAR4 (2011) [4], and
MetaMap (2001) [5]. These subsequent systems used linguistic rules,
patterns, and dictionaries to map concept mentions to MeSH terms.
MetaMap became the backbone of the Medical Text Indexer (MTI) [6]
in 2004. Today, the National Library of Medicine (NLM) at the National
Institutes of Health (NIH) employs MTI as the automated first-line
indexer for over 350 journals.

Application of BEL to clinical text was not far behind indexing
publications. CHARTLINE (1992) [7] and MedLEE (1995) [8] used
similar dictionary matching techniques to extract and link entities in
clinical reports to the Unified Medical Language System (UMLS). REX
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Fig. 1. PRISMA flow diagram of publications returned from a PubMed search for full-text articles published between 1980 and August 2022 which contained any of the phrases
‘‘entity linking’’, ‘‘entity normalization’’, ‘‘concept linking’’, or ‘‘concept normalization’’ in the abstract or title.
(2006) [9], by physicians Friedlin and McDonald, linked mentions from
clinical notes to ICD-9-CM codes to facilitate medical record coding
and included the novel feature of negation recognition to mitigate false
positives for negative mentions (i.e. patient denies smoking). Friedlin
later adapted his REX system to identify adverse drug reactions (ADR)
mentioned on drug labels and link them to the Medical Dictionary for
Regulatory Activities (MedDRA) with a system called SPLICER [10].
Shortly after Friedlin’s publications, Savova et al. [11] also released an
end-to-end clinical NLP system called cTAKES (2010), which included
an entity linking component. QuickUMLS [12] (2016) addressed the
computational performance limitations of its predecessors by using
an approximate dictionary matching algorithm, CPMerge, to achieve
higher F1 scores than both MetaMap and cTAKES while requiring only
a fraction of their runtime. RysannMD [13] similarly created a fast
and accurate system which used a probabilistic model based on the
individual tokens in each mention to predict concept mappings.

For developing the first generation of BEL systems, which relied
exclusively on dictionary matching techniques and jointly performed
NER and entity linking, researchers generally annotated their own
training data from scratch. This changed in the mid-2010s with the
release of prominent entity linking corpora, such as the ShARe/CLEF
eHealth Challenge corpus [14] and the NCBI dataset [15] which pro-
vided a set of linked mentions out of the box. For the first time,
2

researchers could model BEL as an independent task, limiting the scope
of their work to matching a mention assumed to be an entity to its
corresponding concept. This allowed for more complex perturbations
of pre-extracted mentions, which would have been combinatorially
intractable when considering a document in its entirety. D’Souza and
Ng [16] broke ground with an influential sieve-based method that
attempted to match mentions to concepts through ten progressively
fuzzy layers of morphological permutations. Fig. 2 illustrates potential
layers in a rule-based BEL pipeline. Rather than permuting the limited
set of mentions in an attempt to match concepts in the much larger
ontology, Liu, et al. [17] created their own semantic lexicon based
on knowledge from the UMLS and information mined from a large
clinical corpus to maximize the probability of extracting mentions from
a corpus which correspond to concepts in their MedLEx. Leal et al. [18]
applied a rule-based similarity approach to the ShARe/CLEF dataset by
searching for matches by minimizing Levenshtein distance to SNOMED-
CT candidates and resolving ties by choosing the SNOMED-CT concept
with the lowest Information Content (IC) [19]. While these systems
were more sophisticated than their predecessors, they still shared many
of the core limitations of the earliest work. Rule-based systems are
generally fast, but they are unable to consider semantic meaning,
so they struggle when linking mentions that require either context
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Fig. 2. Possible steps in a rule-based BEL pipeline where the system attempts to match progressively more permuted versions of the initial mention.
Fig. 3. Typical steps in a machine learning-based BEL pipeline.
(i.e. does ‘‘depression’’ refer to a mood disorder or a sunken area?)
or when vernacular for describing a concept is too lexically diverse
(i.e. how many ways can you say ‘‘inadequate oral intake’’?).

2.2. Modern era

While dictionary-based clinical NLP methods remain popular for
production implementation because of their interpretability and con-
figurability [20], learning-based methods have largely replaced them
in informatics research because of their superior performance. This
paradigm shift transitioned BEL from a matching problem to a map-
ping problem requiring successful systems to numerically represent
mentions and concepts and train models to connect them. One of the
best-known early attempts at applying machine learning to BEL was
DNorm [21], which used TF-IDF representations of mentions and con-
cepts to train a linear classifier to score pairs of mention and concept
representations. DNorm demonstrated a nearly 10 point gain in F-
measure performance over existing rule-based baselines, becoming the
defacto baseline for subsequent systems. The author later incorporated
DNorm into a joint NER and BEL model called TaggerOne [22], which
considered the results of two scoring functions in semi-Markov models
that determined both the mention boundaries of the entity and linked
it to the appropriate concept.

The first round of deep learning techniques applied to BEL repre-
sented tokens with static vector representations of words (such as TF-
IDF and word embeddings [23]) and used architectures like CNN and
BiLSTM to demonstrate improvement over classical machine learning
(ML) baselines like DNorm [24–26]. The emergence of deep contextual
embeddings, such as ELMo [27] and BERT [28], effected a sea change
in natural language processing research, and BEL research has been no
exception. While some researchers still investigate using static embed-
dings as their primary form of representation, all current state of the
art systems use some form of deep contextualized embeddings, with
BERT encoders pre-trained on clinical and/or biomedical text being the
clear favorites [29–31]. As with classical ML BEL, both binary [32] and
multi-class [33] classification models are popular, but the improved
quality of representations and the ability to train the encoder has
opened up other options as well, like similarity-based ranking [29] and
clustering [31]. Fig. 3 illustrates typical steps in a machine learning-
based BEL pipeline and lists some of the configurable options for each
step.

3. Applications

The Apache Unstructured Information Management Architecture™
(UIMA) framework [34] is an interoperability platform developed to
handle software systems that process large amounts of text. Its ad-
vantage is the plug-and-play aspect allowing different components
to be pipelined together. The framework has been ported from gen-
eral English to process large amounts of clinical and biomedical text.
3

CLAMP [35], cTAKES [11], Leo [36], MedTagger [37], and NOBLE
Coder [38] all utilize the UIMA framework. One key component to
each of these frameworks with respect to this review is the addition
of a BEL component into their information extraction pipelines. A
typical pipeline includes components that (1) initially extract specific
entity types (e.g., Diseases, Drugs) from the text, (2) determine the
relationship between the entities (e.g., Treats, Reason), and (3) link the
entities to their respective concept in an ontology (e.g., the UMLS). The
BEL component normalizes synonymous terms (e.g., Heart Attack and
Myocardial Infarction) allowing information across documents to be
analyzed regardless of their lexical diversity. However, as with relation
extraction, error propagation [39] becomes a challenge in real-world
environments where any error that occurs when identifying the entities
is propagated to downstream tasks including both the identification of
the relations between the entities and the linking of those entities to
their respective concepts.

These system have been used to develop information extraction
pipelines to address use cases centered around the extraction of specific
types of information from clinical notes [20]. For example, mapping
clinical entities in notes to Fast Healthcare Interoperability Resources
(FHIR) standards [40] to supplement discrete electronic health record
data for purposes such as cohort identification and clinical monitoring.
Another example includes automatically assigning International Codes
for Diseases (ICD-9-CM/ICD-10-CM) to clinical records for automated
billing [41,42]. These codes are typically utilized for billing purposes
but can also provide salient disease or symptom information about the
patient [42].

4. Datasets

The set of biomedical corpora annotated for BEL continues to in-
crease every year and this task continues to become a prominent
research interest. Important dimensions for diversity of these datasets
are the domain of the text corpus, target ontology for linking, and
the types of entities being linked. Scientific literature, the original BEL
domain, remains popular, with corpora often annotating broad ranges
of biomedical concepts mapped to MeSH terms or UMLS concepts.
Several BioCreative challenges have published corpora in this domain
focused on niche entities like genes or chemicals, which sometimes map
to smaller ontologies. Clinical domain datasets are often targeted to
entities which provide clinical utility such as disorders, problems, tests,
and treatments. These are generally mapped to either the UMLS or ICD
codes. Other sources for datasets include online social media such as
Tweets and discussion forum posts, as well as drug packaging labels,
and Wikipedia. There is a particular research interest in using BEL to
link adverse drug events (ADE) to either MedDRA or the UMLS. We
identified at least seven datasets that have been curated for the sole
purpose of linking drugs and ADEs. Table 1 shows for each dataset,
the document type, entity types, the target ontology, the number of
documents in the dataset, the number of mentions, and number of
unique mentions (when provided).
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Table 1
Biomedical entity linking datasets.

Domain Doc type Citation Date Entity(ies) Ontology Doc count Mentions Unique concepts

Scientific
Literature

Biomedical
Abstract

GENIA [43] 2003 Biomedical (broad) MeSH 2000 93,293 –
NCBI Disease [15] 2014 Disorder MeSH 793 6892 790
MedMentions [44] 2019 Biomedical (broad) UMLS 4392 352,496 34,724
MM-ST21pv [44] 2019 Biomedical (broad) UMLS 4392 203,282 25,419
PubMedDS [45] 2021 Biomedical (broad) MeSH 13,197,430 57,943,354 44,881
RegEl [46] 2022 DNA Regulatory Elements Various 419 8369 2947

Biomedical
Article

BC5CDR [47] 2016 Chemical, Disorder MeSH 1500 10,227 –
CRAFT [48] 2016 Biomedical (broad) Many– 97 – –
BioNLP-2019 [49] 2019 Bacteria Biotope NCBI 392 7232 1072
PharmaCoNER [50] (ESP) 2019 Chemical, Drug UMLS 1000 7624 –
BC7NLMCHEM [51] 2021 Chemical MeSH 150 38,342 2064

Multi Source Quaero [52] (FRA) 2014 Biomedical (broad) UMLS 2538 26,407 5796
Mantra [53] 2014 Biomedical (broad) UMLS 1450 5530 3780

Figure Caption BC6BioID [54] 2017 Gene,Chemical ChEBI,UniProt 17,883 133,003 7652

Clinical Clinical Note

ShARe/CLEF [14] 2013 Disorder UMLS 431 19,557 1871
CUILESS2016 [55] 2018 Disorder UMLS 431 5397 1738
n2c2 2019 [56] (Luo, 2019) 2019 Problem, Test, Treatment UMLS 100 10,919 3792
MADE [57] 2019 ADE, Drug, Indication MedDRA 1089 43,000 –
Cantemist [58] (ESP) 2020 Oncology ICD-O 1301 16,030 850
BRONCO [59] (DE) 2021 Oncology ICD-10, OPS, ATC 200 11,124 4027

Social Media/
Online Literature

Drug Label TAC2017 [60] 2017 ADE MedDRA 200 26,488 –

Tweets
Twitter ADR [61] 2015 ADE, Indication UMLS 1784 1693 –
SMM4H-17 [62] 2017 ADE MedDRA 25,678 – –
TwADR-L [63] 2016 ADE SIDER? 1436 – 273

Drug
Forum

DailyStrength ADR [61] 2015 ADE, Indication UMLS 6279 4929 –
CADEC [64] 2015 ADE,Disorder,Drug AMT,MedDRA,SNOMED 1253 9111 3591
PsyTAR [65] 2019 ADE,Disorder UMLS 891 7414 1671
COMETA [66] 2020 Biomedical (broad) UMLS – 20,000 3645

Wikipedia WikiMed [45] 2021 Biomedical (broad) UMLS 393,618 1067,083 57,739

International Classification of Diseases for Oncology (ICD-O); Operationen und Prozedurenschlüssel (OPS); Anatomical Therapeutic Chemical Classification System (ATC).
5. Performance comparison

In Table 2, we compare the performance of various extant sys-
tems on six BEL datasets (BC5CDR Disease [47], BC5CDR Chem-
ical [47], CADEC [64], NCBI Disease [15], n2c2 2019 [56], and
ShARe/CLEF [14]) in terms of accuracy. These datasets were chosen
because of their relative popularity and the number of authors choosing
to evaluate their systems using accuracy. We chose accuracy as our
common metric because it is reported for a plurality of systems. All re-
sults were reported by the respective authors, so it is important to note
that results may not be directly comparable due to differences in eval-
uation techniques. For example, Miftahutdinov and Tutubalina [67]
evaluated their system using cross validation on the entire corpus rather
than only the test partition. Some authors choose to remove conceptless
annotations [67,68]. Also, some systems [29] only require their systems
to map mentions to a correct synonym for predictions to be considered
correct, whereas other systems require the more stringent criteria of
mapping to the correct concept ID [68,69]. The latter specification
generally results in lower accuracy because systems must solve the
additional challenge of disambiguation.

6. Shared tasks

There have been a number of shared tasks focused on BEL, starting
with the inaugural BioCreative challenge in 2004 [84]. Table 3 shows
the different tasks that have been organized over the years. We classify
these tasks into three categories based on the type of text that was
annotated as outlined in the previous section. Within each category,
the tasks are ordered based on their date. Table 3 also includes the
document source, entities and the associated ontology.

The majority of shared tasks focus on scientific literature with the
early BioCreative tasks mapping a broad class of biomedical entities to
concepts in the MeSH ontology [84]. Since that time, new shared tasks
have been developed every four years or so, expanding from abstracts
to full text, and incorporating new entity types. The clinical shared
4

tasks began in 2013 [14] focusing on disorders with the most recent
task [56] expanding to include both treatments and tests. The social
media shared tasks both happened in 2017 and focused on adverse drug
reactions (ADR).

7. Technical discussion

All BEL systems are a pipeline of various components and tech-
niques which can be mix and matched to fit a practitioner’s data and
use case. Some potential applications of BEL are discussed in Section 3.
In this section we will discuss the major categories of techniques, how
they work, and where they have been applied.

7.1. Preprocessing

Many BEL publications make no mention of any pre-processing
of the input corpus prior to training. Whether this step is implied
or simply omitted is not entirely clear, but where mentioned, many
systems follow standard pre-processing steps such as converting all
text to lowercase and removing punctuation. Authors frequently correct
spelling on the NCBI Disease dataset, for which D’Souza, et al. [16]
curated a corpus-specific dictionary to this end, but we have not seen
a generalizable tool in use for other datasets. Two additional common
steps are expanding abbreviations to full form using the Abbreviation
Plus Pseudo-Precision (Ab3P) [89] tool and separating composite men-
tions into distinct parts (i.e. ‘‘BRCA1/2’’ into ‘‘BRCA1’’ and ‘‘BRCA2’’)
using the SimConcept [90] tool. Finally, it is common practice to
append the mentions from the training set to the synonym dictionary
when evaluating performance on the test set [16,29]. However, some
have questioned whether this results in an unfair evaluation given the
frequent overlap of mentions between training and test datasets [91].

7.2. Mention/concept representation

Rule-based systems represent mentions using tokens [5,16], in other
words, actual human-readable words and phrases. These representa-
tions can do fairly well given that many mentions are morphologically
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Table 2
Performance comparison of extant systems.

BC5CDR (d) BC5CDR (c) CADEC NCBI Disease n2c2 2019 ShARe/CLEF

Chen, et al. [70] – – – – 82.1 –
D’Souza, et al. [16] – – – 84.7 – 90.8
Ji, et al. [71] – – – 89.1 – 91.1
Lee, et al. [72] – – 65.0 – – –
Li, et al. [73] – – – 86.1 – 90.3
Liu, et al. (SAPBERT) [30] 93.5 96.5 – 92.3 – –
Limsopatham and Collier [63] – – 81.41 – – –
Kalyan, et al. [74] – – 82.6 – – –
Miftahutdinov and Tutubalina (2018) [67] – – 88.8 – – –
Miftahutdinov, et al. (2021) [75] 75.8 83.8 – – – –
Mondal, et al. [76] – – – 90.0 – –
Niu, et al. [26] – – 84.7 – – –
Pattisapu, et al. [77] – – 76.7 – – –
Phan, et al. [78] 90.6 95.8 – 87.7 – –
Schumacher, et al. [68] – – – – – 62
Silva, et al. [79] – – – – 80.6 –
Sung, et al. [29] 93.2 96.6 – 91.1 – –
Tutubalina, et al. (2018) [25] – – 70.1 – – –
Wright, et al. [80] 88 – – 87.8 – –
Xu, et al. (2020) [81] – – 87.5 – 83.6 –
Xu and Miller (2022) [82] – – – – 85.3 91.3
Zhang, et al. (KRISSBERT) [69] 90.7 96.9 – 89.9 80.2 90.4
Zhao, et al. [83] – – – 88.2 – –

Comparison of reported accuracies on six popular BEL datasets. The BC5CDR dataset contains partitions corresponding to disease (d) and chemical
(c) normalization, which are often evaluated separately.
Table 3
Entity linking shared tasks.

Domain Year Task Document source Entity type(s) Ontology

Scientific
Literature

2004 BC I (1b) [84] MEDLINE Fly, mouse, and yeast genes Organizer provided
2006 BC II (1b) [85] MEDLINE Human genes EntrezGene
2010 BC III GN [86] PMC full text Genes EntrezGene
2016 BC V CDR (3a) [47] PubMed Chemicals, diseases, chemical-disease interactions MeSH
2017 BC VI Bio-ID (1) [54] Figure captions Genes, chemicals, cell type, subcellular location, tissue, organism
2019 BioNLP 2019 (1) [49] PubMed Microorganism, habitat, phenotype NCBI, OntoBiotope
2021 BC VII NLMCHEM (1b) [51] PubMed Chemicals MeSH

Clinical

2013 ShARe/CLEF 2013 (1b,2) [14]

Clinical records

Disorders SNOMED CT
2014 SE-2014 (7b) [87] Disorders SNOMED CT
2015 SE-2015 Task 14 (1,2a) [88] Disorders SNOMED CT
2019 2019 n2c2 (3) [56] Problems, treatments, tests SNOMED CT, RxNorm

2019 PharmaCoNER [50] Clinical records Drugs, chemicals SNOMED CT
2020 IberLEF CANTEMIST-NORM [58] (ESP) Tumor morphology ICD-O

Social Media 2017 SMM4H 2017 (3) [62] Twitter ADRs MedDRA
2017 TAC 2017 [60] Drug labels ADRs MedDRA

BioCreative (BC); SemEval (SE); Task/Track number in parentheses.
similar to known synonyms of their corresponding concept, but this
technique has a real upper bound when mentions differ significantly
from documented synonyms, and as Blair, et al. [92] note, synonym
coverage for biomedical entities is far from complete. Representing
mentions numerically opens up a world of possibilities for choosing
sophisticated learning algorithms. The simplest such representation is
Term Frequency-Inverse Document Frequency (TF-IDF) vectors, used
in the first machine learning-based BEL system, DNorm [21]. This
technique scores tokens with a ratio its frequency in a mention by its
overall frequency in the set of concept synonyms. While this technique
is intuitive, it fails to capture semantic meaning and shares many short-
comings with token representation. Word embeddings, which project
tokens into a latent semantic vector space, do address the problem
capturing semantic meaning. The first iteration of such techniques,
led by Word2Vec [23], created static vector representations of tokens
which effectively aggregated the contextual usage of a given token
within a corpus and embedded it in the semantic space. For the first
time, word embeddings allowed us to mathematically compare the sim-
ilarity of two given tokens without requiring any additional knowledge.
The improved quality of these representations correlated with a higher
5

quality output from the systems which incorporated them. The primary
downside to these static representations is that they cannot capture the
nuance of words that have different meanings in different contexts.
Deep contextualized embeddings such as ELMo [27] and BERT [28]
capture not only aggregate semantic meaning, but also take into ac-
count a token’s context within a specific sentence. These techniques
provide unquestionably state of the art embedding quality embeddings,
which are the foundation of all the current top performing BEL systems.
However, quality comes at a computational cost and generating deep
contextualized embeddings at any practical scale requires access to a
GPU. The final major category of representations is graph-based tech-
niques, such as concept vectors. Node2Vec [93], as employed by Ferré,
et al. [94] in their CONTES system, models concepts in an ontology as
nodes in a graph and relationships between concepts as edges, it then
generates a vector space which embeds concepts such that connected
nodes in the graph correspond to closeness within the vector space.
CONTES used these concept vectors only to represent concepts, and
learned a mapping between the semantic space representing mentions
and the ontology space generated by Node2Vec. They also note that

this technique may not scale well to large ontologies.
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7.3. Linking algorithms

The crux of any BEL system is the algorithm which links the
representation of a mention to a concept in the target ontology. The
most basic implementation of this mapping is a dictionary lookup,
which checks if the mention is an exact match of some known concept
synonym. To increase recall, systems [16] may create morphological
permutations of the mention and check if the permutations match any
known synonyms, but the expression of natural language is diverse
and any system which generates enough blind permutations to achieve
respectable recall will inevitably generate a huge number of false
positives. But there is still a place for morphological feature extraction
in sophisticated BEL systems, some have used Lucene search to select a
small set of candidate concepts prior to using deep learning techniques
to make a final prediction [95].

Learning algorithms train systems find mappings between men-
tions and concepts in a vector space, which allows them to achieve
both higher recall and precision. BEL systems incorporating classical
machine learning started with linear classifiers to learn positive and
negative correlations between tokens in mentions and concept syn-
onyms [21]. As the quality of word representations improved and
access to GPUs became widespread in the 2010s, deep learning tech-
niques such as CNN [63], RNN [63], GRU [25], and BiLSTM [96]
came into vogue. Other systems have trained lesser known learning
algorithms such as RankSVM [33] and TreeLSTM [97], but neither of
these have achieved widespread adoption.

As expected, using a BERT for BEL performs quite well. Typi-
cally, researchers use BERT classifiers [30], but sequence-to-sequence
translation models have been explored as well [98]. Other models
have leveraged the high quality of BERT embeddings to rely on sim-
ple similarity measures to perform their mapping [29], training only
the encoder and omitting a secondary neural architecture entirely.
PageRank, an algorithm originally designed for scoring the relevance
of search engine results, has been used to link entities when using
graph-based representations [99].

One technique uncommon in BEL that deserves more attention is
clustering, which Angell, et al. [31] employed following candidate
generation by creating an affinity graph with mention-mention and
mention-concept connections for all mentions and candidates in a given
document. They iteratively pruned connections in the graph to create
clusters until each cluster contained exactly one concept linked one or
more mentions. This approach is especially helpful for disambiguating
mentions of generic phrases which corresponded to entities described
more specifically elsewhere in the document and yielded the current
state of the art performance for few-shot entity linking.

7.4. Training techniques

In addition to the building blocks described in the previous sections,
we noted several training techniques commonly employed by successful
BEL systems. The most common of these is a two step process in which
a system first uses a high-recall technique to select a small pool of
candidate concepts from the target ontology, followed by a higher
precision technique to select a single concept for prediction out of the
pool of candidates. The algorithms used for candidate generation vary
widely, but recurring solutions include search engine-style algorithms
like bag-of-words retrieval function BM25 [33] or Lucene [95], similar-
ity of mention representations [29,76], and edit distance [99]. A related
strategy for narrowing the range of possible candidates is to predict
the semantic type of the mention and only consider candidates of the
predicted semantic type. The MedType [45] system was created to
perform this type of semantic type prediction in entity linking pipelines.
Another way that semantic types have been used to augment BEL
pipelines is to train the prediction step to rank all candidates with the
correct semantic type over those with the wrong semantic type [81,95],
6

as opposed to loss functions which only consider the top-ranked candi-
date. External knowledge bases such as Wikipedia [30,100] have also
shown promise as valuable sources of information for inclusion in BEL
systems.

The state of the art SAPBERT model [30] attributed its success to
a self-alignment pre-training strategy in which only difficult positive
and negative examples for a given gold concept in each mini-batch
are used for training. The subsequent multi-similarity loss function
simultaneously pushes negative examples away from the gold concept,
while pulling the positive examples closer. Finally, it is also common
to perform entity linking jointly with other NLP tasks, in particular,
named entity recognition [22,83,101].

7.5. Multilingual-based approaches

Entity linking in non-English corpora presents additional challenges
and several non-English corpora [50,52,58] exist to train systems to
tackle these challenges. The most straightforward approach is to link
directly from the source documents to an ontology in the same lan-
guage. This can work well if the ontology has good coverage, but in
the UMLS, there are many times more English synonyms available
than those in non-English target language, even in the best cases
(Spanish and French with more than six times and twenty-four times
respectively [102]). Non-uniform distribution of non-English synonyms
does allow that there are cases in which this strategy could still work
for specific languages and problems, such as identifying disorders in
Italian clinical notes [103], but for other languages and use cases, the
scarcity of target language synonyms can be a insurmountable obstacle
for this strategy. A naive approach for overcoming these challenges
is to simply translate the non-English mentions into English using
standard translation software and perform BEL on the translations. This
works reasonably well, but is limited by the quality of the translation,
which may struggle to properly translate medical jargon [103]. Roller,
et al. 2018 [104] combined these two approaches sequentially, first
looking for a match for a given mention in the target language UMLS,
then English language UMLS, and finally searching English UMLS for
the translation of the mention. Deep learning-based approaches [26]
favoring encoder models learning a direct mapping from non-English
mentions to English synonyms [105] have performed well. The current
best performing model for multilingual BEL adapts the SAPBERT [30]
system to map mentions in any language to language-agnostic CUIs
in the UMLS. This system augments the cross-lingual links between
CUIs by leveraging the titles of Wikipedia articles available in multiple
languages where the article title can be mapped to the UMLS for at
least one language. The authors found that performance for a given
language generally correlated with its similarity to English, likely be-
cause more general translation knowledge could be incorporated into
the model [102].

8. Discussion

A fundamental limitation of BEL is that treating the task as a
classification problem with a learning-based approach requires the
output space to be at minimum equal to the number of concepts to
be predicted. While this works well when the output space tends to
be small [63], these approaches struggle as the size of the taxonomy
increases [95], particularly with concepts that have only a few ex-
ample mentions in the training data. While current state of the art
accuracies greater than 90% on many of the most common BEL datasets
would seem to indicate that the problem is largely solved, Tutubalina,
et al. [91] found that approximately 80% of entity mentions in the
test datasets they analyzed were either duplicated within the test
set or replicated exactly in the training dataset. Because many sys-
tems [16,95] add training mentions to their synonym dictionaries used
for inference against test data, this unrealistically inflates the actual
abilities of a system to link mentions in a corpus with higher variability.
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They supported this hypothesis by creating a ‘‘refined’’ version of five
popular BEL datasets, removing all duplication of mentions in the test
sets, and comparing a state of the art BEL system’s performance on the
original and refined test sets. Their results showed a substantial per-
formance impact from the de-duplication, indicating that developing
effective solutions to BEL as a zero or few-shot learning problem is
an area ripe for future improvements. Developing effective techniques
for distant [77] and self-supervision [69] will be crucial to scaling BEL
systems to perform well when linking mentions to concepts which are
dissimilar to annotated data.

The development of non-English BEL corpora [50,52,58] and recent
multilingual systems [102,105] are a great start for expanding BEL
to be a truly multilingual task, but BEL performance on non-English
texts trails far behind the state of the art performance on English texts,
especially for languages which are absent or severely underrepresented
in the UMLS. More work is needed specifically to develop more non-
English BEL corpora and to find new strategies for overcoming the
difficulties of mapping underrepresented languages to the UMLS.

Newman-Griffis, et al. [106], demonstrate that existing BEL datasets
do not sufficiently capture the ambiguity resulting from unique strings
mapping to multiple possible CUIs in the UMLS. Polysemy, where a
word can have multiple senses, can harm the generalizability of models
when the training data exposes models to only one sense a word,
erroneously causing it to appear unambiguous. This phenomenon can
be especially prevalent in datasets which annotate only narrow slices
of clinical entities, such as diseases. In such a case, ‘‘cold’’ may be
annotated several times in reference to a viral infection, but never as
a relative perception of temperature, though both senses of the word
may appear in actual notes. Another source of ambiguity common to
telegraphic clinical language is metonymy, in which one concept is
used as shorthand for a related concept. Without properly understand-
ing context, BEL systems can easily conflate devices for procedures
(i.e. ‘‘stent’’), substances for lab measurements (i.e. ‘‘potassium’’), and
diagnoses for symptoms. A final source of ambiguity can result from the
level of specificity in the annotation, such as whether an instance was
noted to be a sequela, whether multiple were specified (i.e. ‘‘injuries’’
vs. ‘‘injury’’), or hierarchical specificity (i.e. ‘‘hemiplegia’’ vs. ‘‘left
hemiplegia’’). They recommend developing ambiguity-focused datasets
to train systems to capture a more nuanced contextual understanding
of ambiguous mentions.

A subsequent paper by Newman-Griffis [107] introduces the re-
search paradigm of ‘‘translational NLP’’, in which basic and applied NLP
research inform one another. Under this paradigm, we can see a poten-
tial way to mitigate at least one class of ambiguity. When researchers
query structured clinical data, which may include the discretized results
of a BEL algorithm, they rarely search for a single concept in isolation,
rather they curate a set of concepts [108], often hierarchically related,
which correspond to a more general clinical phenotype. In such cases,
hierarchical classification errors could in many cases be close enough to
the gold concept to still be included in the correct phenotype. Evaluat-
ing performance with respect to ontological similarity rather than solely
considering a binary measure of whether a prediction exactly matches
the gold concept could be a productive line of inquiry for future BEL
research.

9. Conclusions

In this paper, we reviewed previous work on BEL providing an
overview of the progression of historical approaches (Section 2) and
providing a reference for the BEL datasets (Section 4) and shared
tasks (Section 6) that have been developed. We then discussed salient
challenges and opportunities for future work, highlighting four areas
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specifically:
• Reported results are inflated by overlap between training and
test mentions and duplication within test datasets. Evaluating
systems performance on datasets without the benefit of overlap
and duplication makes it clear that there is much work to be done
with BEL as a zero or few-shot learning problem.

• BEL performance on non-English mentions is significantly lower
than on English, especially for those languages absent or severely
underrepresented in the UMLS.

• Current BEL datasets do not sufficiently capture the ambigu-
ity resulting from unique strings mapping to multiple distinct
concepts.

• Alternative performance metrics like ontological similarity should
be explored in order to develop systems which best meet real
world use cases.
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