forked from joeyballentine/Video-Inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
91 lines (66 loc) · 2.85 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import argparse
import torch
import os
import sys
from progressbar import ProgressBar
import torch_directml
dml = torch_directml.device()
from utils.state_dict_utils import get_model_from_state_dict
import torch_directml
dml = torch_directml.device()
parser = argparse.ArgumentParser()
parser.add_argument('model')
parser.add_argument('--input', default='input', help='Input folder')
parser.add_argument('--output', default='output', help='Output folder')
parser.add_argument('--cpu', action='store_true',
help='Use CPU instead of CUDA')
parser.add_argument('--denoise', action='store_true',
help='Denoise the chroma layers')
parser.add_argument('--chop_forward', action='store_true')
parser.add_argument('--crf', default=0, type=int)
parser.add_argument('--exp', default=1, type=int,
help='RIFE exponential interpolation amount')
parser.add_argument('--fp16', action='store_true',
help='Use floating-point 16 mode for faster inference')
args = parser.parse_args()
is_video = False
if not os.path.exists(args.input):
print('Error: Folder [{:s}] does not exist.'.format(args.input))
sys.exit(1)
elif os.path.isfile(args.input) and args.input.split('.')[-1].lower() in ['mp4', 'mkv', 'm4v', 'gif']:
is_video = True
if args.output.split('.')[-1].lower() not in ['mp4', 'mkv', 'm4v', 'gif']:
print('Error: Output [{:s}] is not a file.'.format(args.input))
sys.exit(1)
elif not os.path.isfile(args.input) and not os.path.isfile(args.output) and not os.path.exists(args.output):
os.mkdir(args.output)
device = torch.device('cpu') if args.cpu else dml
input_folder = os.path.normpath(args.input)
output_folder = os.path.normpath(args.output)
def main():
state_dict = torch.load(args.model, weights_only=True)
model = get_model_from_state_dict(state_dict, device)
model.load_state_dict(state_dict)
# Case for if input and output are video files, read/write with ffmpeg
if is_video:
from utils.io_classes.video_io import VideoIO
io = VideoIO(args.output, model.scale, crf=args.crf, exp=args.exp)
# Regular case with input/output frame images
else:
from utils.io_classes.image_io import ImageIO
io = ImageIO(args.output)
# Feed input path to i/o
io.set_input(args.input)
# Pad beginning and end frames so they get included in output
io.pad_data(model.num_padding)
# Pass i/o into model
model.set_io(io)
# Inference loop
# , redirect_stdout=True):
for idx in ProgressBar()(range(model.num_padding, len(io) - model.num_padding)):
LR_list = model.get_frames(idx)
model.inference(LR_list, args)
# Close output stream (if video)
model.io.close()
if __name__ == '__main__':
main()