-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprimitives_tf.py
216 lines (164 loc) · 7.33 KB
/
primitives_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"""
Copyright (C) 2024 Instituto Andaluz Interuniversitario en Ciencia de Datos e Inteligencia Computacional (DaSCI).
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
"""File that contains the primitive functions to build an easy training loop of the federated learning model.
In this file we specify some functions for each framework, i.e., TensorFlow (tf), PyTorch (pt), among others, but
we only give functions for a general purpose. For a more personalized use of FLEXible, the user must create
her own functions. The user can use this functions as template on how to create a custom function for each step
of the training steps in a federated learning environment.
Note that each function is using the decorators we've created to facilitate the use of the library. For a better
understanding on how the platform works, please go to the flex_decorators file.
"""
from copy import deepcopy # noqa: E402
from flex.pool.decorators import ( # noqa: E402
collect_clients_weights,
deploy_server_model,
init_server_model,
set_aggregated_weights,
)
@init_server_model
def init_server_model_tf(
model=None, optimizer=None, loss=None, metrics=None, *args, **kwargs
):
"""Function that initialize a model in the server side for the TensorFlow framework.
This function acts as a message handler, that will initialize
the model at the server side in a client-server architecture.
Args:
-----
model (tf.keras.Model): A tf.keras.model initialized.
optimizer (tf.keras.optimizers, optional): Optimizer for the model. Defaults to None.
loss (tf.keras.losses, optional): _description_. Defaults to None.
metrics (tf.keras.metrics, optional): _description_. Defaults to None.
Raises:
-------
ValueError: If the model is not compiled and any of the optimizer, loss or metrics
is not provided, then it will raise an error because we can't initialize
the model.
Returns:
--------
FlexModel: A FlexModel that will be assigned to the server.
"""
from flex.model.model import FlexModel
server_flex_model = FlexModel()
if model._is_compiled:
server_flex_model["optimizer"] = deepcopy(model.optimizer)
server_flex_model["loss"] = deepcopy(model.loss)
server_flex_model["metrics"] = deepcopy(model.compiled_metrics._metrics)
server_flex_model["model"] = model
else:
if any([optimizer, loss, metrics] is None):
raise ValueError(
"If the model is not compiled, then optimizer, loss and metrics can't be None. Please, provide a "
"value for these arguments. "
)
server_flex_model["optimizer"] = optimizer
server_flex_model["loss"] = loss
server_flex_model["metrics"] = metrics
server_flex_model["model"] = model
# Compile the model
server_flex_model["model"].compile(
optimizer=server_flex_model["optimizer"],
loss=server_flex_model["loss"],
metrics=server_flex_model["metrics"],
)
return server_flex_model
@deploy_server_model
def deploy_server_model_tf(server_flex_model, *args, **kwargs):
"""Function to deploy a TensorFlow model from the server to a client.
The function will make a deepcopy for a TensorFlow model, as it needs
a special method of copying. Also, it compiles the model for being able
to train the model.
This function uses the decorator @deploy_server_model to deploy the
server_flex_model to the all the clients, so we only need to create
the steps for 1 client.
Args:
-----
server_flex_model (FlexModel): Server FlexModel
Returns:
--------
FlexModel: The client's FlexModel
"""
import tensorflow as tf
from flex.model.model import FlexModel
weights = server_flex_model["model"].get_weights()
model = tf.keras.models.clone_model(server_flex_model["model"])
model.set_weights(weights)
model.compile(
optimizer=server_flex_model["optimizer"],
loss=server_flex_model["loss"],
metrics=server_flex_model["metrics"],
)
client_flex_model = FlexModel()
client_flex_model["model"] = model
return client_flex_model
def train_tf(client_flex_model, client_data, *args, **kwargs):
"""Function of general purpose to train a TensorFlow model
using FLEXible.
Args:
-----
client_flex_model (FlexModel): client's FlexModel
client_data (FedDataset): client's FedDataset
Example of use assuming you are using a client-server architecture:
from flex.pool import train_tf
clients = flex_pool.clients
clients.map(train_tf)
Example of using the FlexPool without separating clients
and following a client-server architecture.
from flex.pool import train_tf
flex_pool.clients.map(train_tf)
"""
X, y = client_data.to_numpy()
client_flex_model["model"].fit(X, y, *args, **kwargs)
@collect_clients_weights
def collect_clients_weights_tf(client_flex_model, *args, **kwargs):
"""Function that collect the weights for a TensorFlow model.
This function returns all the weights of the model.
Args:
-----
client_flex_model (FlexModel): A client's FlexModel
Returns:
--------
np.array: An array with all the weights of the client's model
Example of use assuming you are using a client-server architecture:
from flex.pool import collect_weights_tf
clients = flex_pool.clients
aggregator = flex_pool.aggregators
clients.map(collect_weights_tf, aggregator)
Example of using the FlexPool without separating clients
and aggregator, and following a client-server architecture.
from flex.pool import collect_weights_tf
flex_pool.clients.map(collect_weights_tf, flex_pool.aggregators)
"""
return client_flex_model["model"].get_weights()
@set_aggregated_weights
def set_aggregated_weights_tf(server_flex_model, aggregated_weights, *args, **kwargs):
"""Function that replaces the weights of the server with the aggregated weights of the aggregator.
Args:
-----
server_flex_model (FlexModel): The server's FlexModel
aggregated_weights (np.array): An array with the aggregated
weights of the models.
"""
server_flex_model["model"].set_weights(aggregated_weights)
def evaluate_model_tf(flex_model, test_data):
"""Function that evaluate the global model on the test data.
Args:
-----
flex_model (FlexModel): server's FlexModel
test_data (Dataset): Test inputs.
Returns:
--------
Evaluations by the model on the test data.
"""
X, y = test_data.to_numpy()
return flex_model["model"].evaluate(X, y, verbose=False)