-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf_recognizer.py
107 lines (97 loc) · 4.44 KB
/
tf_recognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import cv2
import numpy as np
import itertools
import tensorflow as tf
from skimage.feature import canny
from skimage.transform import hough_line, hough_line_peaks
from skimage.transform import rotate
from skimage.color import rgb2gray
def tf_recognizer_func(image_path_global):
tich_file = image_path_global
letters = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'E', 'H', 'K', 'M', 'O', 'P', 'T', 'X', 'Y']
def decode_batch(out):
ret = []
for j in range(out.shape[0]):
out_best = list(np.argmax(out[j, 2:], 1))
out_best = [k for k, g in itertools.groupby(out_best)]
outstr = ''
for c in out_best:
if c < len(letters):
outstr += letters[c]
ret.append(outstr)
return ret
for i in range(len(tich_file)):
img_name1 = tich_file[i]
path = img_name1
image0 = cv2.imread(img_name1, 1)
image_height, image_width, _ = image0.shape
image = cv2.resize(image0, (1024, 1024))
image = image.astype(np.float32)
paths = './model_resnet.tflite'
interpreter = tf.lite.Interpreter(model_path=paths)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
X_data1 = np.float32(image.reshape(1, 1024, 1024, 3))
input_index = (interpreter.get_input_details()[0]['index'])
interpreter.set_tensor(input_details[0]['index'], X_data1)
interpreter.invoke()
detection = interpreter.get_tensor(output_details[0]['index'])
net_out_value2 = interpreter.get_tensor(output_details[1]['index'])
net_out_value3 = interpreter.get_tensor(output_details[2]['index'])
net_out_value4 = interpreter.get_tensor(output_details[3]['index'])
img = image0
razmer = img.shape
img2 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Converts from one colour space to the other
img3 = img[:, :, :]
box_x = int(detection[0, 0, 0] * image_height)
box_y = int(detection[0, 0, 1] * image_width)
box_width = int(detection[0, 0, 2] * image_height)
box_height = int(detection[0, 0, 3] * image_width)
if np.min(detection[0, 0, :]) >= 0:
cv2.rectangle(img2, (box_y, box_x), (box_height, box_width), (230, 230, 21), thickness=5)
image = img3[box_x:box_width, box_y:box_height, :]
grayscale = rgb2gray(image)
edges = canny(grayscale, sigma=3.0)
out, angles, distances = hough_line(edges)
_, angles_peaks, _ = hough_line_peaks(out, angles, distances, num_peaks=20)
angle = np.mean(np.rad2deg(angles_peaks))
if 0 <= angle <= 90:
rot_angle = angle - 90
elif -45 <= angle < 0:
rot_angle = angle - 90
elif -90 <= angle < -45:
rot_angle = 90 + angle
if abs(rot_angle) > 20:
rot_angle = 0
rotated = rotate(image, rot_angle, resize=True) * 255
rotated = rotated.astype(np.uint8)
rotated1 = rotated[:, :, :]
minus = np.abs(int(np.sin(np.radians(rot_angle)) * rotated.shape[0]))
if rotated.shape[1] / rotated.shape[0] < 2 and minus > 10:
rotated1 = rotated[minus:-minus, :, :]
lab = cv2.cvtColor(rotated1, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
cl = clahe.apply(l)
limg = cv2.merge((cl, a, b))
final = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
paths = './model1_nomer.tflite'
interpreter = tf.lite.Interpreter(model_path=paths)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
img = final # лучше работает при плохом освещении
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.resize(img, (128, 64))
img = img.astype(np.float32)
img /= 255
img1 = img.T
img1.shape
X_data1 = np.float32(img1.reshape(1, 128, 64, 1))
input_index = (interpreter.get_input_details()[0]['index'])
interpreter.set_tensor(input_details[0]['index'], X_data1)
interpreter.invoke()
net_out_value = interpreter.get_tensor(output_details[0]['index'])
pred_texts = "".join(decode_batch(net_out_value))
return pred_texts