forked from VainF/Diff-Pruning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddpm_train.py
545 lines (505 loc) · 22.6 KB
/
ddpm_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
# Modifed from https://github.com/huggingface/diffusers/tree/main/examples/unconditional_image_generation
import argparse
import inspect
import logging
import math
import os, sys
import accelerate
import torch
import torch.nn.functional as F
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration
from packaging import version
from torchvision import transforms
import torchvision
from tqdm.auto import tqdm
import diffusers
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel, DDIMPipeline, DDIMScheduler
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from diffusers.utils import is_accelerate_version, is_tensorboard_available, is_wandb_available
import utils
logger = get_logger(__name__, log_level="INFO")
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--pruned_model_ckpt", type=str, default=None)
parser.add_argument(
"--dataset",
type=str,
default=None,
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
" or to a folder containing files that HF Datasets can understand."
),
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The config of the Dataset, leave as None if there's only one config.",
)
parser.add_argument(
"--model_path",
type=str,
default=None,
help="The config of the UNet model to train, leave as None to use standard DDPM configuration.",
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help=(
"A folder containing the training data. Folder contents must follow the structure described in"
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
" must exist to provide the captions for the images. Ignored if `dataset` is specified."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="ddpm-model-64",
help="The output directory where the checkpoints will be written.",
)
parser.add_argument("--overwrite_output_dir", action="store_true")
parser.add_argument(
"--cache_dir",
type=str,
default='./cache',
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument(
"--resolution",
type=int,
default=64,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--dropout",
type=float,
default=0.0,
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation."
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
" process."
),
)
parser.add_argument(
"--checkpoint_id",
type=int,
default=None,
)
parser.add_argument(
"--load_ema",
action="store_true",
default=False,
)
parser.add_argument("--num_iters", type=int, default=10000)
parser.add_argument(
"--save_model_steps", type=int, default=1000, help="How often to save the model during training."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument(
"--adam_weight_decay", type=float, default=0.0, help="Weight decay magnitude for the Adam optimizer."
)
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
parser.add_argument(
"--use_ema",
action="store_true",
help="Whether to use Exponential Moving Average for the final model weights.",
)
parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
parser.add_argument("--ema_max_decay", type=float, default=0.999, help="The maximum decay magnitude for EMA.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
)
parser.add_argument(
"--logger",
type=str,
default="tensorboard",
choices=["tensorboard", "wandb"],
help=(
"Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)"
" for experiment tracking and logging of model metrics and model checkpoints"
),
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument(
"--prediction_type",
type=str,
default="epsilon",
choices=["epsilon", "sample"],
help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
)
parser.add_argument("--ddpm_num_steps", type=int, default=1000)
parser.add_argument("--ddim_num_inference_steps", type=int, default=100)
parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.dataset is None and args.train_data_dir is None:
raise ValueError("You must specify either a dataset name from the hub or a train data directory.")
return args
def main(args):
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration()
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.logger,
project_dir=logging_dir,
project_config=accelerator_project_config,
)
if args.logger == "tensorboard":
if not is_tensorboard_available():
raise ImportError("Make sure to install tensorboard if you want to use it for logging during training.")
elif args.logger == "wandb":
if not is_wandb_available():
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
import wandb
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
diffusers.utils.logging.set_verbosity_info()
else:
diffusers.utils.logging.set_verbosity_error()
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Loading pruned model
if os.path.isdir(args.model_path):
if args.pruned_model_ckpt is not None:
print("Loading pruned model from {}".format(args.pruned_model_ckpt))
unet = torch.load(args.pruned_model_ckpt, map_location='cpu').eval()
else:
print("Loading model from {}".format(args.model_path))
subfolder = 'unet' if os.path.isdir(os.path.join(args.model_path, 'unet')) else None
unet = UNet2DModel.from_pretrained(args.model_path, subfolder=subfolder).eval()
pipeline = DDPMPipeline(
unet=unet,
scheduler=DDPMScheduler.from_pretrained(args.model_path, subfolder="scheduler")
)
# Loading standard model
else:
print("Loading pretrained model from {}".format(args.model_path))
pipeline = DDPMPipeline.from_pretrained(
args.model_path,
)
model = pipeline.unet
noise_scheduler = pipeline.scheduler
# Get the datasets: you can either provide your own training and evaluation files (see below)
dataset = utils.get_dataset(args.dataset)
logger.info(f"Dataset size: {len(dataset)}")
train_dataloader = torch.utils.data.DataLoader(
dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
)
num_epochs = math.ceil(args.num_iters / len(train_dataloader))
# Create EMA for the model.
if args.use_ema:
ema_model = EMAModel(
model.parameters(),
decay=args.ema_max_decay,
use_ema_warmup=False,
inv_gamma=args.ema_inv_gamma,
power=args.ema_power,
model_cls=UNet2DModel,
model_config=model.config,
)
# Initialize the optimizer
optimizer = torch.optim.Adam(
model.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# Initialize the learning rate scheduler
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=(len(train_dataloader) * num_epochs),
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
if args.use_ema:
ema_model.to(accelerator.device)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
run = os.path.split(__file__)[-1].split(".")[0]
accelerator.init_trackers(run)
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(dataset)}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Num Epochs = {num_epochs}")
logger.info(f" Total optimization steps = {args.num_iters}")
global_step = 0
first_epoch = 0
# save the shell command
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, 'run.sh'), 'w') as f:
f.write('python ' + ' '.join(sys.argv))
# setup dropout
if args.dropout>0:
utils.set_dropout(model, args.dropout)
# generate images before training
if accelerator.is_main_process:
unet = accelerator.unwrap_model(model).eval()
if args.use_ema:
ema_model.store(unet.parameters())
ema_model.copy_to(unet.parameters())
pipeline = DDIMPipeline(
unet=unet,
scheduler=DDIMScheduler(num_train_timesteps=args.ddpm_num_steps)
)
pipeline.scheduler.set_timesteps(args.ddim_num_inference_steps)
images = pipeline(
batch_size=args.eval_batch_size,
num_inference_steps=args.ddim_num_inference_steps,
output_type="numpy",
).images
if args.use_ema:
ema_model.restore(unet.parameters())
os.makedirs(os.path.join(args.output_dir, 'vis'), exist_ok=True)
torchvision.utils.save_image(torch.from_numpy(images).permute([0, 3, 1, 2]), os.path.join(args.output_dir, 'vis', 'before_training.png'))
images_processed = (images * 255).round().astype("uint8")
if args.logger == "tensorboard":
if is_accelerate_version(">=", "0.17.0.dev0"):
tracker = accelerator.get_tracker("tensorboard", unwrap=True)
else:
tracker = accelerator.get_tracker("tensorboard")
tracker.add_images("After Pruning", images_processed.transpose(0, 3, 1, 2), 0)
elif args.logger == "wandb":
# Upcoming `log_images` helper coming in https://github.com/huggingface/accelerate/pull/962/files
accelerator.get_tracker("wandb").log(
{"After Pruning": [wandb.Image(img) for img in images_processed], "epoch": 0},
step=global_step,
)
del unet
del pipeline
accelerator.wait_for_everyone()
# Train!
os.makedirs(os.path.join(args.output_dir, 'vis'), exist_ok=True)
for epoch in range(first_epoch, num_epochs):
progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
progress_bar.set_description(f"Epoch {epoch}")
for step, batch in enumerate(train_dataloader):
model.train()
# Skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
if step % args.gradient_accumulation_steps == 0:
progress_bar.update(1)
continue
if isinstance(batch, (list, tuple)):
clean_images = batch[0]
else:
clean_images = batch
noise = torch.randn(clean_images.shape).to(clean_images.device)
bsz = clean_images.shape[0]
# The standard training procedure in diffusers
#timesteps = torch.randint(
# 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
#).long()
# Our experiements were conduct on https://github.com/ermongroup/ddim/blob/main/runners/diffusion.py
timesteps = torch.randint(
low=0, high=noise_scheduler.config.num_train_timesteps, size=(bsz // 2 + 1,)
).to(clean_images.device)
timesteps = torch.cat([timesteps, noise_scheduler.config.num_train_timesteps - timesteps - 1], dim=0)[:bsz]
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)
with accelerator.accumulate(model):
optimizer.zero_grad()
# Predict the noise residual
model_output = model(noisy_images, timesteps).sample
loss = (noise - model_output).square().sum(dim=(1, 2, 3)).mean(dim=0)
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
if args.use_ema:
ema_model.step(model.parameters())
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
if args.use_ema:
logs["ema_decay"] = ema_model.cur_decay_value
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
# Save the model & generate sample images
if global_step % args.save_model_steps == 0:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
# save the model
unet = accelerator.unwrap_model(model).eval()
unet.zero_grad()
os.makedirs(os.path.join(args.output_dir, 'pruned'), exist_ok=True)
torch.save(unet, os.path.join(args.output_dir, 'pruned', 'unet_pruned.pth'.format(global_step)))
torch.save(unet, os.path.join(args.output_dir, 'pruned', 'unet_pruned-{}.pth'.format(global_step)))
if args.use_ema:
ema_model.store(unet.parameters())
ema_model.copy_to(unet.parameters())
torch.save(unet, os.path.join(args.output_dir, 'pruned', 'unet_ema_pruned.pth'.format(global_step)))
torch.save(unet, os.path.join(args.output_dir, 'pruned', 'unet_ema_pruned-{}.pth'.format(global_step)))
pipeline = DDPMPipeline(
unet=unet,
scheduler=noise_scheduler,
)
pipeline.save_pretrained(args.output_dir)
# generate images
logger.info("Sampling images...")
pipeline = DDIMPipeline(
unet=unet,
scheduler=DDIMScheduler(num_train_timesteps=args.ddpm_num_steps)
)
pipeline.scheduler.set_timesteps(args.ddim_num_inference_steps)
images = pipeline(
batch_size=args.eval_batch_size,
num_inference_steps=args.ddim_num_inference_steps,
output_type="numpy",
).images
if args.use_ema:
ema_model.restore(unet.parameters())
torchvision.utils.save_image(torch.from_numpy(images).permute([0, 3, 1, 2]), os.path.join(args.output_dir, 'vis', 'iter-{}.png'.format(global_step)))
# denormalize the images and save to tensorboard
images_processed = (images * 255).round().astype("uint8")
if args.logger == "tensorboard":
if is_accelerate_version(">=", "0.17.0.dev0"):
tracker = accelerator.get_tracker("tensorboard", unwrap=True)
else:
tracker = accelerator.get_tracker("tensorboard")
tracker.add_images("test_samples", images_processed.transpose(0, 3, 1, 2), global_step)
elif args.logger == "wandb":
# Upcoming `log_images` helper coming in https://github.com/huggingface/accelerate/pull/962/files
accelerator.get_tracker("wandb").log(
{"test_samples": [wandb.Image(img) for img in images_processed], "steps": global_step},
step=global_step,
)
del unet
del pipeline
if global_step>args.num_iters:
progress_bar.close()
accelerator.wait_for_everyone()
accelerator.end_training()
return
progress_bar.close()
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)