Skip to content

Latest commit

 

History

History
46 lines (22 loc) · 4.92 KB

Science-Robotics.md

File metadata and controls

46 lines (22 loc) · 4.92 KB

Science Robotics

  • Kim, Y., Yang, Y., Zhang, X., Li, Z., Vázquez-Guardado, A., Park, I., Wang, J., Efimov, A.I., Dou, Z., Wang, Y. and Park, J., 2023. Remote control of muscle-driven miniature robots with battery-free wireless optoelectronics. Science Robotics, 8(74), p.eadd1053. [ www ] ( CMA-ES + Continuous Optimization #)
    • "With a computational eBiobot model in hand, we then tackled the problem of optimizing the scaffold to maximize its forward walking speed. To do this, we coupled Elastica with the Covariance Matrix Adaptation Evolution Strategy algorithm (CMA-ES), a method specialized for dealing with nonlinear, nonconvex continuous optimization problems. Coupled with Elastica, CMA-ES was demonstrated as an efficient design tool for a range of engineering and biohybrid applications."
      • M. Gazzola, L. H. Dudte, A. G. McCormick, L. Mahadevan, Forward and inverse problems in the mechanics of soft filaments. R. Soc. Open Sci. 5, 171528 (2018).
      • X. Zhang, F. K. Chan, T. Parthasarathy, M. Gazzola, Modeling and simulation of complex dynamic musculoskeletal architectures. Nat. Comm. 10, 4825 (2019).
      • N. Hansen, “The CMA evolution strategy: A comparing review,” in Towards a New Evolutionary Computation (Springer, Berlin, 2006), pp. 75–102.
  • Lee, R.H., Mulder, E.A. and Hopkins, J.B., 2022. Mechanical neural networks: Architected materials that learn behaviors. Science Robotics, 7(71), p.eabq7278. [ www ] ( GA | PS )
  • Witte, K.A., Fiers, P., Sheets-Singer, A.L. and Collins, S.H., 2020. Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics, 5(40), p.eaay9108. [ www ] ( CMA-ES )
  • Vásárhelyi, G., Virágh, C., Somorjai, G., Nepusz, T., Eiben, A.E. and Vicsek, T., 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics, 3(20), p.eaat3536. [ www ] ( CMA-ES )

Blackiston, D., Lederer, E., Kriegman, S., Garnier, S., Bongard, J. and Levin, M., 2021. A cellular platform for the development of synthetic living machines. Science Robotics, 6(52).

Dorigo, M., Theraulaz, G., & Trianni, V. (2020). Reflections on the future of swarm robotics. Science robotics, 5(49), eabe4385. [ pdf ]

Xie, H., Sun, M., Fan, X., Lin, Z., Chen, W., Wang, L., Dong, L., & He, Q. (2019). Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation. Science robotics, 4(28), eaav8006. [ pdf ]

McGuire, K. N., De Wagter, C., Tuyls, K., Kappen, H. J., & de Croon, G. C. H. E. (2019). Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment. Science robotics, 4(35), eaaw9710. [ pdf ]

Yang, G. Z., Bellingham, J., Dupont, P. E., Fischer, P., Floridi, L., Full, R., Jacobstein, N., Kumar, V., McNutt, M., Merrifield, R., Nelson, B. J., Scassellati, B., Taddeo, M., Taylor, R., Veloso, M., Wang, Z. L., & Wood, R. (2018). The grand challenges of Science Robotics. Science robotics, 3(14), eaar7650. [ pdf ]

Mirzae, Y., Dubrovski, O., Kenneth, O., Morozov, K. I., & Leshansky, A. M. (2018). Geometric constraints and optimization in externally driven propulsion. Science robotics, 3(17), eaas8713. [ pdf ]

Garattoni, L., & Birattari, M. (2018). Autonomous task sequencing in a robot swarm. Science robotics, 3(20), eaat0430. [ pdf ]

Slavkov, I., Carrillo-Zapata, D., Carranza, N., Diego, X., Jansson, F., Kaandorp, J., Hauert, S., & Sharpe, J. (2018). Morphogenesis in robot swarms. Science robotics, 3(25), eaau9178. [ pdf ]

Li, J., Esteban-Fernández de Ávila, B., Gao, W., Zhang, L., & Wang, J. (2017). Micro/Nanorobots for Biomedicine: Delivery, Surgery, Sensing, and Detoxification. Science robotics, 2(4), eaam6431. [ pdf ]

Yan, X., Zhou, Q., Vincent, M., Deng, Y., Yu, J., Xu, J., Xu, T., Tang, T., Bian, L., Wang, Y. J., Kostarelos, K., & Zhang, L. (2017). Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Science robotics, 2(12), eaaq1155. [ pdf ]

Laschi, C., Mazzolai, B. and Cianchetti, M., 2016. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Science Robotics, 1(1), p.eaah3690. [ www ] (ER)