-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_trials.py
90 lines (81 loc) · 3.83 KB
/
run_trials.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import time
import os
import pickle
import argparse
import numpy as np
import pypoplib.continuous_functions as cf
class Experiment(object):
def __init__(self, index, function, seed=None, distributed=None, island=None):
self.index = index
self.function = function
self.seed = seed
self.distributed = distributed
self.island = island
self.ndim_problem = 2000
self._folder = 'pypop_benchmarks_lso'
if not os.path.exists(self._folder):
os.makedirs(self._folder)
self._file = os.path.join(self._folder, 'Algo-{}_Func-{}_Dim-{}_Exp-{}.pickle')
def run(self, optimizer):
problem = {'fitness_function': self.function,
'ndim_problem': self.ndim_problem,
'upper_boundary': 10.0 * np.ones((self.ndim_problem,)),
'lower_boundary': -10.0 * np.ones((self.ndim_problem,))}
options = {'max_function_evaluations': np.Inf,
'max_runtime': 3600 * 2, # seconds
'fitness_threshold': 1e-10,
'seed_rng': self.seed,
'record_fitness': True,
'record_fitness_frequency': 2000,
'verbose': False,
'sigma': 0.3} # for ES
if self.distributed:
options['n_islands'] = self.island
solver = optimizer(problem, options)
results = solver.optimize()
file = self._file.format(solver.__class__.__name__,
solver.fitness_function.__name__,
solver.ndim_problem,
self.index)
with open(file, 'wb') as handle:
pickle.dump(results, handle, protocol=pickle.HIGHEST_PROTOCOL)
class Experiments(object):
def __init__(self, start, end, distributed, island):
self.start = start
self.end = end
self.distributed = distributed
self.island = island
self.indices = range(self.start, self.end + 1)
self.functions = [cf.sphere, cf.cigar, cf.discus, cf.cigar_discus, cf.ellipsoid,
cf.different_powers, cf.schwefel221, cf.step, cf.rosenbrock, cf.schwefel12]
rng = np.random.default_rng(2021)
self.seeds = rng.integers(np.iinfo(np.int64).max, size=(len(self.functions), 100))
def run(self, optimizer):
for index in self.indices:
print('* experiment: {:d} ***:'.format(index))
for d, f in enumerate(self.functions):
start_time = time.time()
print(' * function: {:s}:'.format(f.__name__))
experiment = Experiment(index, f, self.seeds[d, index], self.distributed, self.island)
experiment.run(optimizer)
print(' runtime: {:7.5e}.'.format(time.time() - start_time))
if __name__ == '__main__':
start_run = time.time()
parser = argparse.ArgumentParser()
parser.add_argument('--start', '-s', type=int)
parser.add_argument('--end', '-e', type=int)
parser.add_argument('--optimizer', '-o', type=str)
parser.add_argument('--distributed', '-d', type=bool, default=False)
parser.add_argument('--island', '-i', type=int, default=100)
args = parser.parse_args()
params = vars(args)
if params['optimizer'] == 'MAES':
from maes import MAES as Optimizer
elif params['optimizer'] == 'LMMAES':
if params['distributed']:
from distributed_lmmaes import DistributedLMMAES as Optimizer
else:
from lmmaes import LMMAES as Optimizer
experiments = Experiments(params['start'], params['end'], params['distributed'], params['island'])
experiments.run(Optimizer)
print('*** Total runtime: {:7.5e} ***.'.format(time.time() - start_run))