-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqnagent.py
117 lines (93 loc) · 4.23 KB
/
dqnagent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import torch
import torch.nn as nn
import torch.optim as optim
import random
from collections import deque
from rubikscubenet import RubiksCubeNet
from environment import RubiksCubeEnv, ACTIONS
import os
MODEL_PATH = "saved_model-" + str(len(ACTIONS)) + "-actions.pt"
inverse_actions = {
0: 1, # R -> Ri
1: 0, # Ri -> R
2: 3, # L -> Li
3: 2, # Li -> L
4: 5, # U -> Ui
5: 4, # Ui -> U
6: 7, # D -> Di
7: 6, # Di -> D
8: 9, # F -> Fi
9: 8, # Fi -> F
10: 11, # B -> Bi
11: 10 # Bi -> B
}
class DQNAgent:
def __init__(self, input_size, action_space, device):
output_size = action_space.n
self.device = device
self.action_space = action_space
self.previous_action = None
self.model = RubiksCubeNet(input_size, output_size).to(device)
self.target_model = RubiksCubeNet(input_size, output_size).to(device)
if os.path.exists(MODEL_PATH):
print("Loading model from file: ", MODEL_PATH)
self.model.load_state_dict(torch.load(MODEL_PATH))
self.target_model.load_state_dict(torch.load(MODEL_PATH))
self.model.to(device)
self.print_model_weights()
else:
print("Creating new model")
self.model.to(device)
self.optimizer = optim.Adam(self.model.parameters())
self.memory = deque(maxlen=10000) # Experience replay buffer
# If gamma is close to 0, the agent will primarily focus on immediate rewards, making it short-sighted and potentially leading to suboptimal policies.
# If gamma is close to 1, the agent will consider future rewards more heavily, making it far-sighted and encouraging long-term planning.
self.gamma = 0.5 # Discount factor (tried .99)
self.epsilon = 0.01 # Exploration-exploitation factor
self.epsilon_decay = 0.99999
self.epsilon_min = 0.01
self.batch_size = 64
def act(self, state):
if random.random() > self.epsilon:
with torch.no_grad():
state = torch.FloatTensor(state).to(self.device)
q_values = self.model(state)
valid_q_values = q_values.clone()
if self.previous_action is not None:
inverse_action_idx = inverse_actions[self.previous_action]
valid_q_values[inverse_action_idx] = float('-inf')
action_idx = torch.argmax(valid_q_values).item()
self.previous_action = action_idx
return action_idx
else:
action_idx = random.choice(range(self.action_space.n))
if self.previous_action is not None:
while action_idx == inverse_actions[self.previous_action]:
action_idx = random.choice(range(self.action_space.n))
self.previous_action = action_idx
return action_idx
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def train(self):
if len(self.memory) < self.batch_size:
return
batch = random.sample(self.memory, self.batch_size)
states, actions, rewards, next_states, dones = zip(*batch)
states = torch.FloatTensor(states).to(self.device)
actions = torch.LongTensor(actions).unsqueeze(1).to(self.device)
rewards = torch.FloatTensor(rewards).unsqueeze(1).to(self.device)
next_states = torch.FloatTensor(next_states).to(self.device)
dones = torch.BoolTensor(dones).unsqueeze(1).to(self.device)
current_q_values = self.model(states).gather(1, actions)
next_q_values = self.target_model(next_states).max(1, keepdim=True)[0].detach()
target_q_values = rewards + self.gamma * next_q_values * (~dones)
loss = nn.MSELoss()(current_q_values, target_q_values)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.epsilon = max(self.epsilon * self.epsilon_decay, self.epsilon_min)
def update_target_model(self):
self.target_model.load_state_dict(self.model.state_dict())
def print_model_weights(self):
for name, param in self.model.named_parameters():
print(name, param.data)