-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
65 lines (48 loc) · 2.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from model import UNet
from dataloader import ProstateDataset
from utils import ToTensor, plot_images, visualize_predictions, save_model, load_model
def train_model(model, dataloader, criterion, optimizer, num_epochs=25):
model.train() # Set the model to training mode
for epoch in range(num_epochs):
running_loss = 0.0
for i, batch in enumerate(dataloader):
# Get the inputs and labels from the data loader
inputs = batch['image'].to(device)
labels = batch['mask'].to(device)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, labels)
# Backward pass and optimize
loss.backward()
optimizer.step()
# Print statistics
running_loss += loss.item()
if i % 10 == 9: # print every 10 mini-batches
print(f'Epoch {epoch + 1}, Batch {i + 1}, Loss: {running_loss / 10:.4f}')
running_loss = 0.0
print('Finished Training')
# Setting up device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using {device}")
# Initialize your dataset and dataloader
dataset = ProstateDataset(img_dir='./data/img', mask_dir='./data/mask', transform=ToTensor())
dataloader = DataLoader(dataset, batch_size=4, shuffle=True, num_workers=4)
# Initialize model
model = UNet(n_channels=1, n_classes=1).to(device)
# Loss function
criterion = torch.nn.BCEWithLogitsLoss()
# Optimizer
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Train the model
train_model(model, dataloader, criterion, optimizer, num_epochs=25)
# save model
save_model(model, 'model_unet.pth')
# load model
# load_model(model, 'model_unet.pth', device)
# Visualize predictions
visualize_predictions(dataloader, model, device, num_vis=2)