Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CUDA error in new Enzyme version #1930

Closed
jakubMitura14 opened this issue Sep 30, 2024 · 1 comment
Closed

CUDA error in new Enzyme version #1930

jakubMitura14 opened this issue Sep 30, 2024 · 1 comment

Comments

@jakubMitura14
Copy link

jakubMitura14 commented Sep 30, 2024

Hello I had loaded latest version of Enzyme and tried Cuda test case and it gives error

RTX 3090
Enzyme version: 0.13.6
CUDA version: 5.5.2

using CUDA, Enzyme, Test
function mul_kernel(A)
  i = threadIdx().x
  if i <= length(A)
      A[i] *= A[i]
  end
  return nothing
end

function grad_mul_kernel(A, dA)
  autodiff_deferred(Reverse, Const(mul_kernel), Const, Duplicated(A, dA))
  return nothing
end

A = CUDA.ones(64,)
@cuda threads=length(A) mul_kernel(A)
A = CUDA.ones(64,)
dA = similar(A)
dA .= 1
@cuda threads=length(A) grad_mul_kernel(A, dA)
all(dA .== 2)

and it give error

julia> all(dA .== 2)
ERROR: a exception was thrown during kernel execution on thread (1, 1, 1) in block (1, 1, 1).
Stacktrace:
 [1] error at ./error.jl:35
 [2] autodiff_deferred at /usr/local/share/julia/packages/Enzyme/xD7hH/src/Enzyme.jl:692
 [3] grad_mul_kernel at ./REPL[3]:2

ERROR: KernelException: exception thrown during kernel execution on device NVIDIA GeForce RTX 3090
Stacktrace:
  [1] check_exceptions()
    @ CUDA /usr/local/share/julia/packages/CUDA/2kjXI/src/compiler/exceptions.jl:39
  [2] device_synchronize(; blocking::Bool, spin::Bool)
    @ CUDA /usr/local/share/julia/packages/CUDA/2kjXI/lib/cudadrv/synchronization.jl:191
  [3] device_synchronize
    @ /usr/local/share/julia/packages/CUDA/2kjXI/lib/cudadrv/synchronization.jl:178 [inlined]
  [4] checked_cuModuleLoadDataEx(_module::Base.RefValue{…}, image::Ptr{…}, numOptions::Int64, options::Vector{…}, optionValues::Vector{…})
    @ CUDA /usr/local/share/julia/packages/CUDA/2kjXI/lib/cudadrv/module.jl:18
  [5] CuModule(data::Vector{UInt8}, options::Dict{CUDA.CUjit_option_enum, Any})
    @ CUDA /usr/local/share/julia/packages/CUDA/2kjXI/lib/cudadrv/module.jl:60
  [6] CuModule
    @ /usr/local/share/julia/packages/CUDA/2kjXI/lib/cudadrv/module.jl:49 [inlined]
  [7] link(job::GPUCompiler.CompilerJob, compiled::@NamedTuple{image::Vector{UInt8}, entry::String})
    @ CUDA /usr/local/share/julia/packages/CUDA/2kjXI/src/compiler/compilation.jl:409
  [8] actual_compilation(cache::Dict{…}, src::Core.MethodInstance, world::UInt64, cfg::GPUCompiler.CompilerConfig{…}, compiler::typeof(CUDA.compile), linker::typeof(CUDA.link))
    @ GPUCompiler /usr/local/share/julia/packages/GPUCompiler/2CW9L/src/execution.jl:262
  [9] cached_compilation(cache::Dict{…}, src::Core.MethodInstance, cfg::GPUCompiler.CompilerConfig{…}, compiler::Function, linker::Function)
    @ GPUCompiler /usr/local/share/julia/packages/GPUCompiler/2CW9L/src/execution.jl:151
 [10] macro expansion
    @ /usr/local/share/julia/packages/CUDA/2kjXI/src/compiler/execution.jl:380 [inlined]
 [11] macro expansion
    @ ./lock.jl:267 [inlined]
 [12] cufunction(f::GPUArrays.var"#34#36", tt::Type{Tuple{…}}; kwargs::@Kwargs{})
    @ CUDA /usr/local/share/julia/packages/CUDA/2kjXI/src/compiler/execution.jl:375
 [13] cufunction
    @ /usr/local/share/julia/packages/CUDA/2kjXI/src/compiler/execution.jl:372 [inlined]
 [14] macro expansion
    @ /usr/local/share/julia/packages/CUDA/2kjXI/src/compiler/execution.jl:112 [inlined]
 [15] #launch_heuristic#1200
    @ /usr/local/share/julia/packages/CUDA/2kjXI/src/gpuarrays.jl:17 [inlined]
 [16] launch_heuristic
    @ /usr/local/share/julia/packages/CUDA/2kjXI/src/gpuarrays.jl:15 [inlined]
 [17] _copyto!
    @ /usr/local/share/julia/packages/GPUArrays/qt4ax/src/host/broadcast.jl:78 [inlined]
 [18] copyto!
    @ /usr/local/share/julia/packages/GPUArrays/qt4ax/src/host/broadcast.jl:44 [inlined]
 [19] copy
    @ /usr/local/share/julia/packages/GPUArrays/qt4ax/src/host/broadcast.jl:29 [inlined]
 [20] materialize(bc::Base.Broadcast.Broadcasted{CUDA.CuArrayStyle{1, CUDA.DeviceMemory}, Nothing, typeof(==), Tuple{CuArray{…}, Int64}})
    @ Base.Broadcast ./broadcast.jl:903
 [21] top-level scope
    @ REPL[10]:1
Some type information was truncated. Use `show(err)` to see complete types.
@jakubMitura14 jakubMitura14 changed the title new version of enzyme do not work on CUDA CUDA error in new Enzyme version Sep 30, 2024
@wsmoses
Copy link
Member

wsmoses commented Sep 30, 2024

Fixed by #1931

@wsmoses wsmoses closed this as completed Sep 30, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants