-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAE.py
100 lines (84 loc) · 3.18 KB
/
AE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#Importing the libraries
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
from torch.autograd import Variable
#Preparing the training set and the test set
training_set = pd.read_csv('ml-100k/u1.base', delimiter='\t')
training_set = np.array(training_set, dtype='int')
test_set = pd.read_csv('ml-100k/u1.test', delimiter='\t')
test_set = np.array(test_set, dtype='int')
#Getting the number of users and movies
nb_users = int(max(max(training_set[:, 0], ), max(test_set[:, 0])))
nb_movies = int(max(max(training_set[:, 1], ), max(test_set[:, 1])))
#Converting the data into an array with users in lines and movies in columns
def convert(data):
new_data = []
for id_users in range(1, nb_users + 1):
id_movies = data[:, 1][data[:, 0] == id_users]
id_ratings = data[:, 2][data[:, 0] == id_users]
ratings = np.zeros(nb_movies)
ratings[id_movies - 1] = id_ratings
new_data.append(list(ratings))
return new_data
training_set = convert(training_set)
test_set = convert(test_set)
#Converting the data into Tortch tensorts
training_set = torch.FloatTensor(training_set)
test_set = torch.FloatTensor(test_set)
#Creating the architecture of the Neural Network
class SAE(nn.Module):
def __init__(self, ):
super(SAE, self).__init__()
self.fc1 = nn.Linear(nb_movies, 20)
self.fc2 = nn.Linear(20, 10)
self.fc3 = nn.Linear(10, 20)
self.fc4 = nn.Linear(20, nb_movies)
self.activation = nn.Sigmoid()
def forward(self, x):
x = self.activation(self.fc1(x))
x = self.activation(self.fc2(x))
x = self.activation(self.fc3(x))
x = self.fc4(x)
return x
sae = SAE()
criterion = nn.MSELoss()
optimizer = optim.RMSprop(sae.parameters(), lr=0.01, weight_decay=0.5)
#Training the SAE
nb_epoch = 200
for epoch in range(1, nb_epoch + 1):
train_loss = 0
s = 0.
for id_user in range(nb_users):
input = Variable(training_set[id_user]).unsqueeze(0)
target = input.clone()
if torch.sum(target.data > 0) > 0:
output = sae(input)
target.require_grad = False
output[target == 0] = 0
loss = criterion(output, target)
mean_corrector = nb_movies/float(torch.sum(target.data > 0) + 1e-10)
loss.backward()
train_loss += np.sqrt(loss.data * mean_corrector)
s += 1.
optimizer.step()
print('epoch: '+str(epoch)+' loss: ' + str(train_loss/s))
#Testing the SAE
test_loss = 0
s = 0.
for id_user in range(nb_users):
input = Variable(training_set[id_user]).unsqueeze(0)
target = Variable(test_set[id_user]).unsqueeze(0)
if torch.sum(target.data > 0) > 0:
output = sae(input)
target.require_grad = False
output[target == 0] = 0
loss = criterion(output, target)
mean_corrector = nb_movies/float(torch.sum(target.data > 0) + 1e-10)
test_loss += np.sqrt(loss.data * mean_corrector)
s += 1.
print('test loss: ' + str(test_loss/s))