-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdataset.py
79 lines (74 loc) · 3.52 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from PIL import Image
from torch.utils.data.dataset import Dataset # For custom datasets
from torchvision.transforms import transforms
import numpy as np
class CustomDatasetFromArrays(Dataset):
"""
Fashion Mnist Custom Dataset
If triplet :
For each sample (anchor) randomly chooses a positive and negative samples
Creates fixed triplets for testing
"""
def __init__(self, img_arr, labels_arr, transform=False, triplet=False, train=False, eval=False):
"""
Args:
img_arr (np.float): contains image data
labels_arr (np.long): contains image labels [0..9]
transform: pytorch transforms for transforms and tensor conversion
"""
self.triplet = triplet
self.eval = eval
self.train = train
self.transform = transform
self.images = img_arr
self.labels = labels_arr
self.img_data_len = len(self.images)
self.labels_data_len = len(self.labels)
self.labels_set = set(self.labels)
self.label_to_indices = {label: np.where(self.labels == label)[0]
for label in self.labels_set}
if self.triplet:
if self.eval:
random_state = np.random.RandomState(29)
triplets = [[i,
random_state.choice(self.label_to_indices[self.labels[i].item()]),
random_state.choice(self.label_to_indices[
np.random.choice(
list(self.labels_set - set([self.labels[i].item()]))
)
])
]
for i in range(len(self.images))]
self.test_triplets = triplets
def __getitem__(self, idx):
img = Image.fromarray(self.images[idx])
label = self.labels[idx]
if self.transform:
img = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])(img)
if self.triplet:
if self.train:
img1, label1 = self.images[idx], self.labels[idx].item()
positive_idx = idx
while positive_idx == idx:
positive_idx = np.random.choice(self.label_to_indices[label1])
negative_label = np.random.choice(list(self.labels_set - set([label1])))
negative_idx = np.random.choice(self.label_to_indices[negative_label])
img2 = self.images[positive_idx]
img3 = self.images[negative_idx]
else:
img1 = self.images[self.test_triplets[idx][0]]
img2 = self.images[self.test_triplets[idx][1]]
img3 = self.images[self.test_triplets[idx][2]]
if self.transform is not None:
img1 = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])(img1)
img2 = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])(img2)
img3 = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])(img3)
return (img1, img2, img3), []
else:
return img, label
def __len__(self):
return self.img_data_len