-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn_train.py
66 lines (53 loc) · 2.34 KB
/
rnn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
"""
Given a saved output of predictions or pooled features from our CNN,
train an RNN (LSTM) to examine temporal dependencies.
"""
from rnn_utils import get_network_wide, get_data
import argparse
import tensorflow as tf
import tflearn
import os
def load_labels(label_file):
label = {}
count = 0
proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines()
for l in proto_as_ascii_lines:
label[l.strip()] = count
count += 1
return label
def main(input_data_dump, num_frames_per_video, batch_size, labels, model_file):
# Get our data.
X_train, X_test, y_train, y_test = get_data(input_data_dump, num_frames_per_video, labels, True)
num_classes = len(labels)
size_of_each_frame = X_train.shape[2]
# Get our network.
net = get_network_wide(num_frames_per_video, size_of_each_frame, num_classes)
# Train the model.
try:
model = tflearn.DNN(net, tensorboard_verbose=0)
model.load('checkpoints/' + model_file)
print("\nModel already exists! Loading it")
print("Model Loaded")
except Exception:
model = tflearn.DNN(net, tensorboard_verbose=0)
print("\nNo previous checkpoints of %s exist" % (model_file))
model.fit(X_train, y_train, validation_set=(X_test, y_test),
show_metric=True, batch_size=batch_size, snapshot_step=100,
n_epoch=10)
# Save it.
x = input("Do you wanna save the model and overwrite? y or n: ")
if(x.strip().lower() == "y"):
model.save('checkpoints/' + model_file)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train a RNN')
parser.add_argument("input_file_dump", help="file containing intermediate representation of gestures from inception model")
parser.add_argument("model_file", help="Name of the model file to be dumped. Model file is created inside a checkpoints folder")
parser.add_argument("--label_file", help="path to label file generated by inception", default="retrained_labels.txt")
parser.add_argument("--batch_size", help="batch Size", default=32)
args = parser.parse_args()
labels = load_labels(args.label_file)
input_data_dump = args.input_file_dump
num_frames_per_video = 201
batch_size = args.batch_size
model_file = args.model_file
main(input_data_dump, num_frames_per_video, batch_size, labels, model_file)