-
-
Notifications
You must be signed in to change notification settings - Fork 363
/
Copy pathflysky_ibus.cpp
618 lines (556 loc) · 25 KB
/
flysky_ibus.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
/*
* Copyright (C) EdgeTX
*
* Based on code named
* opentx - https://github.com/opentx/opentx
* th9x - http://code.google.com/p/th9x
* er9x - http://code.google.com/p/er9x
* gruvin9x - http://code.google.com/p/gruvin9x
*
* License GPLv2: http://www.gnu.org/licenses/gpl-2.0.html
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "opentx.h"
/*
* TXID + RXID are already skipped in MULTI module to save memory+transmission time, format from Multi is:
* AA or AC | TX_RSSI | sensor ...
*/
#define FLYSKY_TELEMETRY_LENGTH (2+7*4) // Should it be 2+7*6???
#define ALT_PRECISION 15
#define R_DIV_G_MUL_10_Q15 (uint64_t)9591506
#define INV_LOG2_E_Q1DOT31 (uint64_t)0x58b90bfc // Inverse log base 2 of e
#define PRESSURE_MASK 0x7FFFF
#define REMAP_CONST 0x1000 // Some part of OpenTX does not like sensor with id and instance 0, remap to 0x1000
struct FlySkySensor
{
const uint16_t type;
const char * name;
const TelemetryUnit unit;
const uint8_t precision;
};
// telemetry sensors type
enum
{
SENSOR_TYPE_RX_VOL= 0x00 | REMAP_CONST, // RX supply voltage, remapped
SENSOR_TYPE_TEMPERATURE = 0x01, // Temperature
SENSOR_TYPE_MOT = 0x02, // RPM
SENSOR_TYPE_EXT_VOL = 0x03, // Sensor voltage
SENSOR_TYPE_BVD = 0x103, // built-in voltage measurement of the receiver (the highest bit of ID is 1), which distinguishes independent voltage sensors.
SENSOR_TYPE_GYROSCOPE_1_AXIS = 0x04, // signed short in 0.1 degrees per second, 0x8000 if unknown
SENSOR_TYPE_GPS = 0x40, // GPS
SENSOR_TYPE_PRES = 0x41, // Pressure
SENSOR_TYPE_ALT = 0x1041, // virtual
SENSOR_TYPE_RF_MODULE = 0x56, // Ext flysky rf module sensor(voltage and temperature)
SENSOR_TYPE_RF_MODULE_TEMP = 0x1056, // virtual
SENSOR_TYPE_RF_MODULE_VOL = 0x2056, // virtual
SENSOR_TYPE_TX_V = 0x7F, // TX Voltage
SENSOR_TYPE_ANALOG_SERVO =0xF0, // IBUS2 device
SENSOR_TYPE_DIGITAL_SERVO =0xF1, // IBUS2 device
SENSOR_TYPE_RX_SNR = 0xFA, // SNR
SENSOR_TYPE_RX_NOISE = 0xFB, // Noise
SENSOR_TYPE_RX_RSSI = 0xFC, // RSSI
SENSOR_TYPE_RX_ERR_RATE = 0xFE, // Error rate
SENSOR_TYPE_SIGNAL_STRENGTH = 0xFE, // Error rate
SENSOR_TYPE_END = 0xFF,
/////////////////////////////////////////////////////////////////////////////
AFHDS2A_ID_BAT_CURR = 0x05, // battery current A * 100
AFHDS2A_ID_FUEL = 0x06, // remaining battery percentage / mah drawn otherwise or fuel level no unit!
AFHDS2A_ID_RPM = 0x07, // throttle value / battery capacity
AFHDS2A_ID_CMP_HEAD = 0x08, // Heading 0..360 deg, 0=north 2bytes
AFHDS2A_ID_CLIMB_RATE = 0x09, // 2 bytes m/s *100 signed
AFHDS2A_ID_COG = 0x0A, // 2 bytes Course over ground(NOT heading, but direction of movement) in degrees * 100, 0.0..359.99 degrees. unknown max uint
AFHDS2A_ID_GPS_STATUS = 0x0B, // 2 bytes
AFHDS2A_ID_ACC_X = 0x0C, // 2 bytes m/s *100 signed
AFHDS2A_ID_ACC_Y = 0x0D, // 2 bytes m/s *100 signed
AFHDS2A_ID_ACC_Z = 0x0E, // 2 bytes m/s *100 signed
AFHDS2A_ID_ROLL = 0x0F, // 2 bytes deg *100 signed
AFHDS2A_ID_PITCH = 0x10, // 2 bytes deg *100 signed
AFHDS2A_ID_YAW = 0x11, // 2 bytes deg *100 signed
AFHDS2A_ID_VERTICAL_SPEED = 0x12, // 2 bytes m/s *100 signed
AFHDS2A_ID_GROUND_SPEED = 0x13, // 2 bytes m/s *100 different unit than build-in sensor
AFHDS2A_ID_GPS_DIST = 0x14, // 2 bytes distance from home m unsigned
AFHDS2A_ID_ARMED = 0x15, // 2 bytes
AFHDS2A_ID_FLIGHT_MODE = 0x16, // 2 bytes
AFHDS2A_ID_ODO1 = 0x7C, // Odometer1
AFHDS2A_ID_ODO2 = 0x7D, // Odometer2
AFHDS2A_ID_SPE = 0x7E, // Speed 2 bytes km/h
AFHDS2A_ID_GPS_LAT = 0x80, // 4bytes signed WGS84 in degrees * 1E7
AFHDS2A_ID_GPS_LON = 0x81, // 4bytes signed WGS84 in degrees * 1E7
AFHDS2A_ID_GPS_ALT = 0x82, // 4bytes signed!!! GPS alt m*100
AFHDS2A_ID_ALT = 0x83, // 4bytes signed!!! Alt m*100
AFHDS2A_ID_RX_SIG_AFHDS3 = 0xF7, // SIG
AFHDS2A_ID_RX_SNR_AFHDS3 = 0xF8, // SNR
AFHDS2A_ID_ALT_FLYSKY = 0xF9, // Altitude 2 bytes signed in m - used in FlySky native TX
// AC type telemetry with multiple values in one packet
AFHDS2A_ID_GPS_FULL = 0xFD,
AFHDS2A_ID_VOLT_FULL = 0xF0,
AFHDS2A_ID_ACC_FULL = 0xEF,
AFHDS2A_ID_TX_RSSI = 0x200, // Pseudo id outside 1 byte range of FlySky sensors
};
// telemetry sensors ID
enum
{
AFHDS2A_ID_VOLTAGE = 0x00, // Internal Voltage
AFHDS2A_ID_TEMPERATURE = 0x01, // Temperature
AFHDS2A_ID_MOT = 0x02, // RPM
AFHDS2A_ID_EXTV = 0x03, // External Voltage
AFHDS2A_ID_CELL_VOLTAGE = 0x04, // Avg Cell voltage
AFHDS3_FRM_TEMP = 0x57, //virtual
AFHDS3_FRM_EXT_V = 0x58, //virtual
AFHDS2A_ID_PRES = 0x41, // Pressure
AFHDS2A_ID_TX_V = 0x7F, // TX Voltage
AFHDS2A_ID_S84 = 0x84,
AFHDS2A_ID_S85 = 0x85,
AFHDS2A_ID_S86 = 0x86,
AFHDS2A_ID_S87 = 0x87,
AFHDS2A_ID_S88 = 0x88,
AFHDS2A_ID_S89 = 0x89,
AFHDS2A_ID_S8a = 0x8A,
AFHDS2A_ID_RX_SNR = 0xFA, // SNR
AFHDS2A_ID_RX_NOISE = 0xFB, // Noise
AFHDS2A_ID_RX_RSSI = 0xFC, // RSSI
AFHDS2A_ID_RX_ERR_RATE = 0xFE, // Error rate
AFHDS2A_ID_END = 0xFF,
};
const FlySkySensor flySkySensors[] = {
// flysky start
{ SENSOR_TYPE_RX_VOL, STR_SENSOR_A1, UNIT_VOLTS, 2 }, // RX Voltage (remapped, really 0x0)
{ SENSOR_TYPE_TEMPERATURE, STR_SENSOR_TEMP1, UNIT_CELSIUS, 1 }, // Temperature
{ SENSOR_TYPE_MOT, STR_SENSOR_RPM, UNIT_RAW, 0 }, // RPM
{ SENSOR_TYPE_EXT_VOL, STR_SENSOR_A3, UNIT_VOLTS, 2 }, // External voltage
{ SENSOR_TYPE_BVD, "BVD", UNIT_VOLTS, 2 }, // BVD
{ SENSOR_TYPE_GYROSCOPE_1_AXIS, STR_SENSOR_CELLS, UNIT_DEGREE, 1 }, //
{ SENSOR_TYPE_PRES, STR_SENSOR_PRES, UNIT_RAW, 2 }, // 4 bytes In fact Temperature + Pressure -> Altitude
{ SENSOR_TYPE_ALT, STR_SENSOR_ALT, UNIT_METERS, 2 },
{ SENSOR_TYPE_RF_MODULE_TEMP, STR_SENSOR_TEMP2, UNIT_CELSIUS, 0 }, // 1 bytes temperature
{ SENSOR_TYPE_RF_MODULE_VOL, STR_SENSOR_TXV, UNIT_VOLTS, 2 }, // 2 bytes voltage
{ SENSOR_TYPE_TX_V, STR_SENSOR_TXV, UNIT_VOLTS, 2 }, // TX Voltage
{ SENSOR_TYPE_RX_SNR, STR_SENSOR_RX_SNR, UNIT_DB, 0 }, // RX SNR
{ SENSOR_TYPE_RX_NOISE, STR_SENSOR_RX_NOISE, UNIT_DBM, 0 }, // RX Noise
{ SENSOR_TYPE_RX_RSSI, STR_SENSOR_RSSI, UNIT_DBM, 0 }, // RX RSSI (0xfc)
{ SENSOR_TYPE_RX_ERR_RATE, STR_SENSOR_RX_QUALITY, UNIT_PERCENT, 0 }, // RX error rate
////////////////////////////////////////////////////////////////
{ AFHDS2A_ID_BAT_CURR, STR_SENSOR_CURR, UNIT_AMPS, 2 }, // battery current A * 100
{ AFHDS2A_ID_FUEL, STR_SENSOR_CAPACITY, UNIT_RAW, 0 }, // remaining battery percentage / mah drawn otherwise or fuel level no unit!
{ AFHDS2A_ID_RPM, STR_SENSOR_RPM, UNIT_RAW, 0 }, // throttle value / battery capacity
{ AFHDS2A_ID_CMP_HEAD, STR_SENSOR_HDG, UNIT_DEGREE, 0 }, // Heading 0..360 deg, 0=north 2bytes
{ AFHDS2A_ID_CLIMB_RATE, STR_SENSOR_VSPD, UNIT_METERS_PER_SECOND, 2 }, // 2 bytes m/s *100
{ AFHDS2A_ID_COG, STR_SENSOR_HDG, UNIT_DEGREE, 2 }, // 2 bytes Course over ground(NOT heading, but direction of movement) in degrees * 100, 0.0..359.99 degrees. unknown max uint
{ AFHDS2A_ID_GPS_STATUS, STR_SENSOR_SATELLITES, UNIT_RAW, 0 }, // 2 bytes
{ AFHDS2A_ID_ACC_X, STR_SENSOR_ACCX, UNIT_METERS_PER_SECOND, 2 }, // 2 bytes m/s *100 signed
{ AFHDS2A_ID_ACC_Y, STR_SENSOR_ACCY, UNIT_METERS_PER_SECOND, 2 }, // 2 bytes m/s *100 signed
{ AFHDS2A_ID_ACC_Z, STR_SENSOR_ACCZ, UNIT_METERS_PER_SECOND, 2 }, // 2 bytes m/s *100 signed
{ AFHDS2A_ID_ROLL, STR_SENSOR_ROLL, UNIT_DEGREE, 2 }, // 2 bytes deg *100 signed
{ AFHDS2A_ID_PITCH, STR_SENSOR_PITCH, UNIT_DEGREE, 2 }, // 2 bytes deg *100 signed
{ AFHDS2A_ID_YAW, STR_SENSOR_YAW, UNIT_DEGREE, 2 }, // 2 bytes deg *100 signed
{ AFHDS2A_ID_VERTICAL_SPEED, STR_SENSOR_VSPD, UNIT_METERS_PER_SECOND, 2 }, // 2 bytes m/s *100
{ AFHDS2A_ID_GROUND_SPEED, STR_SENSOR_GSPD, UNIT_METERS_PER_SECOND, 2 }, // 2 bytes m/s *100 different unit than build-in sensor
{ AFHDS2A_ID_GPS_DIST, STR_SENSOR_DIST, UNIT_METERS, 0 }, // 2 bytes dist from home m unsigned
{ AFHDS2A_ID_ARMED, STR_SENSOR_ARM, UNIT_RAW, 0 }, // 2 bytes
{ AFHDS2A_ID_FLIGHT_MODE, STR_SENSOR_FLIGHT_MODE, UNIT_RAW, 0 }, // 2 bytes index
{ SENSOR_TYPE_PRES | 0x100, STR_SENSOR_TEMP2, UNIT_CELSIUS, 1 }, // 2 bytes Temperature
{ AFHDS2A_ID_ODO1, STR_SENSOR_ODO1, UNIT_METERS, 2 }, // 2 bytes Odometer1 -- some magic with 330 needed
{ AFHDS2A_ID_ODO2, STR_SENSOR_ODO2, UNIT_METERS, 2 }, // 2 bytes Odometer2 -- some magic with 330 needed
{ AFHDS2A_ID_SPE, STR_SENSOR_ASPD, UNIT_KMH, 2 }, // 2 bytes Speed km/h -- some magic with 330 needed
{ AFHDS2A_ID_GPS_LAT, STR_SENSOR_GPS, UNIT_RAW, 7 }, // 4 bytes signed WGS84 in degrees * 1E7
{ AFHDS2A_ID_GPS_LON, STR_SENSOR_GPS, UNIT_RAW, 7 }, // 4 bytes signed WGS84 in degrees * 1E7
{ AFHDS2A_ID_GPS_ALT, STR_SENSOR_GPSALT, UNIT_METERS, 2 }, // 4 bytes signed GPS alt m*100
{ AFHDS2A_ID_ALT, STR_SENSOR_ALT, UNIT_METERS, 2 }, // 4 bytes signed Alt m*100
{ AFHDS2A_ID_RX_SIG_AFHDS3, STR_SENSOR_RX_QUALITY, UNIT_RAW, 0 }, // RX error rate
{ AFHDS2A_ID_RX_SNR_AFHDS3, STR_SENSOR_RX_SNR, UNIT_DB, 1 }, // RX SNR
{ AFHDS2A_ID_TX_RSSI, STR_SENSOR_TX_RSSI, UNIT_RAW, 0 }, // Pseudo sensor for TRSSI
{ 0x00, NULL, UNIT_RAW, 0 }, // sentinel
};
int32_t getALT(uint32_t value);
inline int setFlyskyTelemetryValue( int16_t type, uint8_t instance, int32_t value, uint32_t unit, uint32_t prec)
{
return setTelemetryValue(PROTOCOL_TELEMETRY_FLYSKY_IBUS, type, 0, instance, value, unit, prec );
}
void processFlySkyAFHDS3Sensor(const uint8_t * packet, uint8_t len )
{
uint16_t type = (packet[0] << 8) | packet[1];
type = type ? type : SENSOR_TYPE_RX_VOL; // Remapped
uint8_t id = packet[2];
int32_t value=0;
if(len == 1)
{
value = packet[3];
}
else if (len == 2)
{
value = (packet[4] << 8) | packet[3];
}
else if(len == 4)
{
value = (packet[6] << 24) | (packet[5] << 16) | (packet[4] << 8) | packet[3];
}
else
{
if( SENSOR_TYPE_GPS == type )
{
//INRM301 does not support GPS temporarily.
return;
}
else if( SENSOR_TYPE_RF_MODULE == type )
{
uint8_t data1[] = { (uint8_t)(SENSOR_TYPE_RF_MODULE_TEMP>>8), (uint8_t)SENSOR_TYPE_RF_MODULE_TEMP, id, packet[3] };
uint8_t data2[] = { (uint8_t)(SENSOR_TYPE_RF_MODULE_VOL>>8), (uint8_t)SENSOR_TYPE_RF_MODULE_VOL, id, packet[4], packet[5] };
processFlySkyAFHDS3Sensor(data1, 1 );
processFlySkyAFHDS3Sensor(data2, 2 );
return;
}
else
return;
}
if (SENSOR_TYPE_RX_NOISE == type || SENSOR_TYPE_RX_RSSI == type)
{
value = -value;
}
if ( (SENSOR_TYPE_EXT_VOL == type) )
{
if ( id&0x80 )
{
type = SENSOR_TYPE_BVD;
}
}
else if(SENSOR_TYPE_RX_RSSI == type || SENSOR_TYPE_RX_NOISE == type || SENSOR_TYPE_RX_SNR == type)
{
if( value>=0 )
value = (value+2)/4;
else
value = (value-2)/4;
}
else if (SENSOR_TYPE_RX_ERR_RATE == type)
{
telemetryData.rssi.set( value );
if (value > 0) telemetryStreaming = TELEMETRY_TIMEOUT10ms;
}
else if (SENSOR_TYPE_PRES == type)
{
int32_t alt = getALT(value);
int16_t temp = (value >> 19);
uint8_t data1[] = { (uint8_t)(SENSOR_TYPE_ALT>>8), (uint8_t)(SENSOR_TYPE_ALT&0xff), id, (uint8_t)alt, (uint8_t)(alt>>8), (uint8_t)(alt>>16), (uint8_t)(alt>>24) };
uint8_t data2[] = { (uint8_t)(SENSOR_TYPE_TEMPERATURE>>8), (uint8_t)(SENSOR_TYPE_TEMPERATURE&0xff), id, (uint8_t)temp, (uint8_t)(temp>>8) };
processFlySkyAFHDS3Sensor(data1, 4 );
processFlySkyAFHDS3Sensor(data2, 2 );
value &= PRESSURE_MASK;
}
if(SENSOR_TYPE_TEMPERATURE == type)
{
value -= 400;// Temperature sensors have 40 degree offset
}
for (const FlySkySensor * sensor = flySkySensors; sensor->type; sensor++)
{
if (sensor->type != type) continue;
if (sensor->unit == UNIT_VOLTS) value = (int16_t) value; // Voltage types are unsigned 16bit integers
setFlyskyTelemetryValue(type, id, value, sensor->unit, sensor->precision);
return;
}
//unknown
setFlyskyTelemetryValue(type, id, value, UNIT_RAW, 0);
}
void processFlySkySensor(const uint8_t * packet, uint8_t type)
{
uint8_t buffer[8];
uint16_t id = packet[0];
const uint8_t instance = packet[1];
int32_t value;
//Load most likely value
if (type == 0xAA)
value = (packet[3] << 8) | packet[2];
else
value = (packet[5] << 24) | (packet[4] << 16) | (packet[3] << 8) | packet[2];
id = id ? id : SENSOR_TYPE_RX_VOL; // Remapped
if (id == AFHDS2A_ID_RX_NOISE || id == AFHDS2A_ID_RX_RSSI) {
value = 135 - value;
}
else if (id == AFHDS2A_ID_RX_ERR_RATE) {
value = 100 - value;
telemetryData.rssi.set(value);
if (value > 0) telemetryStreaming = TELEMETRY_TIMEOUT10ms;
}
else if(id == AFHDS2A_ID_RX_SIG_AFHDS3) {
telemetryData.rssi.set(value);
if(value>0) telemetryStreaming = TELEMETRY_TIMEOUT10ms;
}
else if (id == AFHDS2A_ID_PRES && value) {
// Extract temperature to a new sensor
setTelemetryValue(PROTOCOL_TELEMETRY_FLYSKY_IBUS, id | 0x100, 0, instance, ((value >> 19) - 400), UNIT_CELSIUS, 1);
// Extract alt to a new sensor
setTelemetryValue(PROTOCOL_TELEMETRY_FLYSKY_IBUS, AFHDS2A_ID_ALT, 0, instance, getALT(value), UNIT_METERS, 2);
value &= PRESSURE_MASK;
}
else if ((id >= AFHDS2A_ID_ACC_X && id <= AFHDS2A_ID_VERTICAL_SPEED) || id == AFHDS2A_ID_CLIMB_RATE || id == AFHDS2A_ID_ALT_FLYSKY) {
value = (int16_t) value; // Signed value
}
else if (id == AFHDS2A_ID_GPS_STATUS) {
value = value >> 8;
}
else if (id == AFHDS2A_ID_GPS_FULL) {
//(AC FRAME)[ID][inst][size][fix][sats][LAT]x4[LON]x4[ALT]x4
setTelemetryValue(PROTOCOL_TELEMETRY_FLYSKY_IBUS, AFHDS2A_ID_GPS_STATUS, 0, instance, packet[4], UNIT_RAW, 0);
for (uint8_t sensorID = AFHDS2A_ID_GPS_LAT; sensorID <= AFHDS2A_ID_GPS_ALT; sensorID++) {
int index = 5 + (sensorID - AFHDS2A_ID_GPS_LAT) * 4;
buffer[0] = sensorID;
buffer[1] = instance;
buffer[2] = 4;
memcpy(buffer + 3, packet + index, 4);
processFlySkySensor(buffer, 0xAC);
}
return;
}
else if (id == AFHDS2A_ID_VOLT_FULL) {
//(AC FRAME)[ID][inst][size][ACC_X]x2[ACC_Y]x2[ACC_Z]x2[ROLL]x2[PITCH]x2[YAW]x2
for (uint8_t sensorID = AFHDS2A_ID_EXTV; sensorID <= AFHDS2A_ID_RPM; sensorID++) {
int index = 3 + (sensorID - AFHDS2A_ID_EXTV) * 2;
buffer[0] = sensorID;
buffer[1] = instance;
buffer[2] = packet[index];
buffer[3] = packet[index + 1];
processFlySkySensor(buffer, 0xAA);
}
return;
}
else if (id == AFHDS2A_ID_ACC_FULL) {
//(AC FRAME)[ID][inst][size]
for (uint8_t sensorID = AFHDS2A_ID_ACC_X; sensorID <= AFHDS2A_ID_YAW; sensorID++) {
int index = 3 + (sensorID - AFHDS2A_ID_ACC_X) * 2;
buffer[0] = sensorID;
buffer[1] = instance;
buffer[2] = packet[index];
buffer[3] = packet[index + 1];
processFlySkySensor(buffer, 0xAA);
}
return;
}
for (const FlySkySensor * sensor = flySkySensors; sensor->type; sensor++) {
if (sensor->type != id) continue;
if (sensor->unit == UNIT_CELSIUS) value -= 400; // Temperature sensors have 40 degree offset
else if (sensor->unit == UNIT_VOLTS) value = (int16_t) value; // Voltage types are unsigned 16bit integers
setTelemetryValue(PROTOCOL_TELEMETRY_FLYSKY_IBUS, id, 0, instance, value, sensor->unit, sensor->precision);
return;
}
//unknown
setTelemetryValue(PROTOCOL_TELEMETRY_FLYSKY_IBUS, id, 0, instance, value, UNIT_RAW, 0);
}
void processFlySkyPacket(const uint8_t * packet)
{
// Set TX RSSI Value, reverse MULTIs scaling
setFlyskyTelemetryValue(AFHDS2A_ID_TX_RSSI, 0, packet[0], UNIT_RAW, 0);
const uint8_t * buffer = packet + 1;
int sesnor = 0;
while (sesnor++ < 7) {
if (*buffer == SENSOR_TYPE_END) break;
processFlySkySensor(buffer, 0xAA);
buffer += 4;
}
}
void processFlySkyPacketAC(const uint8_t * packet)
{
// Set TX RSSI Value, reverse MULTIs scaling
setFlyskyTelemetryValue(AFHDS2A_ID_TX_RSSI, 0, packet[0], UNIT_RAW, 0);
const uint8_t * buffer = packet + 1;
while (buffer - packet < 26) //28 + 1(multi TX rssi) - 3(ac header)
{
if (*buffer == SENSOR_TYPE_END) break;
uint8_t size = buffer[2];
processFlySkySensor(buffer, 0xAC);
buffer += size + 3;
}
}
void processFlySkyTelemetryData(uint8_t data, uint8_t * rxBuffer, uint8_t &rxBufferCount)
{
if (rxBufferCount == 0)
return;
if (data == 2 || data == 4) {
TRACE("[IBUS] Packet 0x%02X", data);
}
else {
TRACE("[IBUS] invalid start byte 0x%02X", data);
rxBufferCount = 0;
return;
}
if (rxBufferCount < TELEMETRY_RX_PACKET_SIZE) {
rxBuffer[rxBufferCount++] = data;
}
else {
TRACE("[IBUS] array size %d error", rxBufferCount);
rxBufferCount = 0;
}
if (rxBufferCount >= FLYSKY_TELEMETRY_LENGTH) {
// debug print the content of the packets
#if 0
debugPrintf(", rssi 0x%02X: ", rxBuffer[1]);
for (int i=0; i<7; i++) {
debugPrintf("[%02X %02X %02X%02X] ", rxBuffer[i*4+2], rxBuffer[i*4 + 3],
rxBuffer[i*4 + 4], rxBuffer[i*4 + 5]);
}
debugPrintf(CRLF);
#endif
if (data == 0xAA) processFlySkyPacket(rxBuffer + 1);
else if (data == 0xAC) processFlySkyPacketAC(rxBuffer + 1);
rxBufferCount = 0;
}
}
const FlySkySensor * getFlySkySensor(uint16_t id)
{
for (const FlySkySensor * sensor = flySkySensors; sensor->type; sensor++) {
if (id == sensor->type)
return sensor;
}
return nullptr;
}
void flySkySetDefault(int index, uint16_t id, uint8_t subId, uint8_t instance)
{
TelemetrySensor &telemetrySensor = g_model.telemetrySensors[index];
telemetrySensor.id = id;
telemetrySensor.subId = subId;
telemetrySensor.instance = instance;
const FlySkySensor * sensor = getFlySkySensor(id);
if (sensor) {
TelemetryUnit unit = sensor->unit;
uint8_t prec = min<uint8_t>(2, sensor->precision);
telemetrySensor.init(sensor->name, unit, prec);
if (unit == UNIT_RPMS) {
telemetrySensor.custom.ratio = 1;
telemetrySensor.custom.offset = 1;
}
}
else {
telemetrySensor.init(id);
}
storageDirty(EE_MODEL);
}
uint16_t ibusTempToK(int16_t tempertureIbus)
{
return (uint16_t) (tempertureIbus - 400) + 2731;
}
int32_t log2fix(uint32_t x)
{
int32_t b = 1U << (ALT_PRECISION - 1);
int32_t y = 0;
while (x < 1U << ALT_PRECISION) {
x <<= 1;
y -= 1U << ALT_PRECISION;
}
while (x >= 2U << ALT_PRECISION) {
x >>= 1;
y += 1U << ALT_PRECISION;
}
uint64_t z = x;
for (size_t i = 0; i < ALT_PRECISION; i++) {
z = (z * z) >> ALT_PRECISION;
if (z >= 2U << ALT_PRECISION) {
z >>= 1;
y += b;
}
b >>= 1;
}
return y;
}
#if 0
int32_t getALT(uint32_t value)
{
uint32_t pressurePa = value & PRESSURE_MASK;
if (pressurePa == 0) return 0;
uint16_t temperatureK = ibusTempToK((uint16_t) (value >> 19));
static uint32_t initPressure = 0;
static uint16_t initTemperature = 0;
if (initPressure <= 0) // use current pressure for ground altitude -> 0
{
initPressure = pressurePa;
initTemperature = temperatureK;
}
int temperature = (initTemperature + temperatureK) >> 1; //div 2
bool tempNegative = temperature < 0;
if (tempNegative) temperature = temperature * -1;
uint64_t helper = R_DIV_G_MUL_10_Q15;
helper = helper * (uint64_t) temperature;
helper = helper >> ALT_PRECISION;
uint32_t po_to_p = (uint32_t)(initPressure << (ALT_PRECISION - 1));
po_to_p = po_to_p / pressurePa;
//shift missing bit
po_to_p = po_to_p << 1;
if (po_to_p == 0) return 0;
uint64_t t = log2fix(po_to_p) * INV_LOG2_E_Q1DOT31;
int32_t ln = t >> 31;
bool neg = ln < 0;
if (neg) ln = ln * -1;
helper = helper * (uint64_t) ln;
helper = helper >> ALT_PRECISION;
int result = (int) helper;
if (neg ^ tempNegative) result = result * -1;
return result;
}
#else
/*==================================================================================================
table:
Function:
==================================================================================================*/
const int16_t tAltitude[225]=
{ // In half meter unit
20558, 20357, 20158, 19962, 19768, 19576, 19387, 19200, 19015, 18831, 18650, 18471, 18294, 18119, 17946, 17774,
17604, 17436, 17269, 17105, 16941, 16780, 16619, 16461, 16304, 16148, 15993, 15841, 15689, 15539, 15390, 15242,
15096, 14950, 14806, 14664, 14522, 14381, 14242, 14104, 13966, 13830, 13695, 13561, 13428, 13296, 13165, 13035,
12906, 12777, 12650, 12524, 12398, 12273, 12150, 12027, 11904, 11783, 11663, 11543, 11424, 11306, 11189, 11072,
10956, 10841, 10726, 10613, 10500, 10387, 10276, 10165, 10054, 9945, 9836, 9727, 9620, 9512, 9406, 9300,
9195, 9090, 8986, 8882, 8779, 8677, 8575, 8474, 8373, 8273, 8173, 8074, 7975, 7877, 7779, 7682,
7585, 7489, 7394, 7298, 7204, 7109, 7015, 6922, 6829, 6737, 6645, 6553, 6462, 6371, 6281, 6191,
6102, 6012, 5924, 5836, 5748, 5660, 5573, 5487, 5400, 5314, 5229, 5144, 5059, 4974, 4890, 4807,
4723, 4640, 4557, 4475, 4393, 4312, 4230, 4149, 4069, 3988, 3908, 3829, 3749, 3670, 3591, 3513,
3435, 3357, 3280, 3202, 3125, 3049, 2972, 2896, 2821, 2745, 2670, 2595, 2520, 2446, 2372, 2298,
2224, 2151, 2078, 2005, 1933, 1861, 1789, 1717, 1645, 1574, 1503, 1432, 1362, 1292, 1222, 1152,
1082, 1013, 944, 875, 806, 738, 670, 602, 534, 467, 399, 332, 265, 199, 132, 66,
0, -66, -131, -197, -262, -327, -392, -456, -521, -585, -649, -713, -776, -840, -903, -966,
-1029,-1091, -1154, -1216, -1278, -1340, -1402, -1463, -1525, -1586, -1647, -1708, -1769, -1829, -1889, -1950,
-2010
};
/*==================================================================================================
Name:
Function:
Input:
Output:
==================================================================================================*/
int32_t getALT(uint32_t Pressure)//CalculateAltitude( uint32_t Pressure, uint32_t SeaLevelPressure )
{
uint32_t Index;
int32_t Altitude1;
int32_t Altitude2;
uint32_t Decimal;
uint64_t Ratio;
uint32_t SeaLevelPressure=101320;
Pressure = Pressure & PRESSURE_MASK;
Ratio = ( ( ( unsigned long long ) Pressure << 16 ) + ( SeaLevelPressure / 2 ) ) / SeaLevelPressure;
if( Ratio < ( ( 1 << 16 ) * 250 / 1000 ) )// 0.250 inclusive
{
Ratio = ( 1 << 16 ) * 250 / 1000;
}
else if( Ratio > ( 1 << 16 ) * 1125 / 1000 - 1 ) // 1.125 non-inclusive
{
Ratio = ( 1 << 16 ) * 1125 / 1000 - 1;
}
Ratio -= ( 1 << 16 ) * 250 / 1000; // from 0.000 (inclusive) to 0.875 (non-inclusive)
Index = Ratio >> 8;
Decimal = Ratio & ( ( 1 << 8 ) - 1 );
Altitude1 = tAltitude[Index];
Altitude2 = Altitude1 - tAltitude[Index + 1];
Altitude1 = Altitude1 - ( Altitude2 * Decimal + ( 1 << 7 ) ) / ( 1 << 8 );
Altitude1 *= 100;
if( Altitude1 >= 0 )
{
return( ( Altitude1 + 1 ) / 2 );
}
else
{
return( ( Altitude1 - 1 ) / 2 );
}
}
#endif