In the process of learning machine learning, individuals summarize the relevant documentation and source code
LinearRegressionCode/
├── LinearRegression/ # Directory for linear regression modules
│ ├── MultivariateLinearRegression.py # Multivariate linear regression
│ ├── Non-linearRegression.py # Non-linear regression
│ ├── UnivariateLinearRegression.py # Uni variate linear regression
│ ├── linear_regression.py # Main script for linear regression
├── LinearRegressionTest/
│ ├── img # Folder containing Jupyter Notebook related files
│ ├── LinearRegressionWithSKLearn.ipynb
│ # Detailed analysis of each step of linear regression, combined with multiple experiments
├── data1
├── util
ModelEvaluationMethod/
├── data1 # Datasets
├── img # Images related to Jupyter Notebooks
├── ModelEvaluationMethod.ipynb
# Code related to model evaluation methods, learning sklearn
LogisticRegressionCode/
│
├── data1/
│
├── logistic_regression/
│ ├── logistic_regression.py # 实现逻辑回归算法
│ ├── logistic_regression_with_linear_boundary.py # 带有线性边界的逻辑回归
│ └── NonLinearBoundary.py # 非线性边界处理
│
└── util/
├── features/ # 特征处理相关的工具函数
│ ├── __init__.py # 初始化
│ ├── generate_polynomials.py # 生成多项式特征
│ ├── generate_sinusoids.py # 生成正弦波特征
│ ├── normalize.py # 数据归一化处理
│ └── prepare_for_training.py # 准备训练数据
└── hypothesis/ # 假设相关的工具函数
├── __init__.py # 初始化
├── sigmoid.py # 实现sigmoid激活函数
└── sigmoid_gradient.py # 实现sigmoid梯度计算