-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathutils.py
167 lines (137 loc) · 5.81 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import sys
import time
import torch
import math
import numpy as np
import cv2
def process_image(image,points,angle=0, flip=False, sigma=1,size=128, tight=16):
if angle > 0:
if np.random.rand(1) > 0.4:
tmp_angle = np.random.randn(1) * angle
image,points = affine_trans(image,points, tmp_angle)
image, points = crop( image , points, size, tight )
if flip:
if np.random.rand(1) > 0.5:
image,points = flip_ImAndPts(image,points)
image = image/255.0
image = torch.from_numpy(image.swapaxes(2,1).swapaxes(1,0))
image = image.type_as(torch.FloatTensor())
source_maps = generate_maps(points, sigma, size)
source_maps = source_maps.type_as(torch.FloatTensor())
return image, source_maps, points
def _gaussian(
size=3, sigma=0.25, amplitude=1, normalize=False, width=None,
height=None, sigma_horz=None, sigma_vert=None, mean_horz=0.5,
mean_vert=0.5):
# handle some defaults
if width is None:
width = size
if height is None:
height = size
if sigma_horz is None:
sigma_horz = sigma
if sigma_vert is None:
sigma_vert = sigma
center_x = mean_horz * width + 0.5
center_y = mean_vert * height + 0.5
gauss = np.empty((height, width), dtype=np.float32)
# generate kernel
for i in range(height):
for j in range(width):
gauss[i][j] = amplitude * math.exp(-(math.pow((j + 1 - center_x) / (
sigma_horz * width), 2) / 2.0 + math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0))
if normalize:
gauss = gauss / np.sum(gauss)
return gauss
def draw_gaussian(image, point, sigma):
# Check if the gaussian is inside
point[0] = round( point[0], 2)
point[1] = round( point[1], 2)
ul = [math.floor(point[0] - 3 * sigma), math.floor(point[1] - 3 * sigma)]
br = [math.floor(point[0] + 3 * sigma), math.floor(point[1] + 3 * sigma)]
if (ul[0] > image.shape[1] or ul[1] >
image.shape[0] or br[0] < 1 or br[1] < 1):
return image
size = 6 * sigma + 1
g = _gaussian(size)
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))]
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))]
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))]
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))]
assert (g_x[0] > 0 and g_y[1] > 0)
image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]
] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]]
image[image > 1] = 1
return image
def generate_maps(points, sigma, size=256):
maps = None
for i in range(0,66):
tpt = np.array([points[i,0],points[i,1]])
map = draw_gaussian(np.zeros((size,size)),tpt,sigma=sigma)
if maps is None:
maps = torch.from_numpy(map).unsqueeze(0)
else:
maps = torch.cat((maps, torch.from_numpy(map).unsqueeze(0)), 0)
return maps
def crop( image, landmarks , size, tight=8):
delta_x = np.max(landmarks[:,0]) - np.min(landmarks[:,0])
delta_y = np.max(landmarks[:,1]) - np.min(landmarks[:,1])
delta = 0.5*(delta_x + delta_y)
if delta < 20:
tight_aux = 8
else:
tight_aux = int(tight * delta/100)
pts_ = landmarks.copy()
w = image.shape[1]
h = image.shape[0]
min_x = int(np.maximum( np.round( np.min(landmarks[:,0]) ) - tight_aux , 0 ))
min_y = int(np.maximum( np.round( np.min(landmarks[:,1]) ) - tight_aux , 0 ))
max_x = int(np.minimum( np.round( np.max(landmarks[:,0]) ) + tight_aux , w-1 ))
max_y = int(np.minimum( np.round( np.max(landmarks[:,1]) ) + tight_aux , h-1 ))
image = image[min_y:max_y,min_x:max_x,:]
pts_[:,0] = pts_[:,0] - min_x
pts_[:,1] = pts_[:,1] - min_y
sw = size/image.shape[1]
sh = size/image.shape[0]
im = cv2.resize(image, dsize=(size,size),
interpolation=cv2.INTER_LINEAR)
pts_[:,0] = pts_[:,0]*sw
pts_[:,1] = pts_[:,1]*sh
return im, pts_
def generate_Ginput( img, target_pts , sigma , size=256 ):
target_maps = generate_maps(target_pts, sigma, size)
target_maps = target_maps.type_as(torch.FloatTensor())
A_to_B = torch.cat((img, target_maps),0)
return A_to_B
def flip_ImAndPts(image,landmarks):
flipImg = cv2.flip(image, 1)
pts_mirror = np.hstack(([range(17,0,-1), range(27,17,-1), range(28,32,1), range(36,31,-1), range(46,42,-1),48,47, range(40,36,-1),42,41,range(55,48,-1),range(60,55,-1),range(63,60,-1),range(66,63,-1)]))
pts_mirror = pts_mirror - 1
flipLnd = np.copy(landmarks)
flipLnd[:,0] = image.shape[1] - landmarks[pts_mirror,0]
flipLnd[:,1] = landmarks[pts_mirror,1]
return flipImg,flipLnd
def affine_trans(image,landmarks,angle=None):
if angle is None:
angle = 30*torch.randn(1)
(h, w) = image.shape[:2]
(cX, cY) = (w // 2, h // 2)
M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# compute the new bounding dimensions of the image
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# adjust the rotation matrix to take into account translation
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
dst = cv2.warpAffine(image, M, (nW,nH))
new_landmarks = np.concatenate((landmarks,np.ones((66,1))),axis=1)
new_landmarks = new_landmarks.dot(M.transpose())
return dst, new_landmarks
def gram_matrix(input):
bsize, ch, r, c = input.size()
features = input.view(bsize * ch, r * c)
G = torch.mm(features, features.t())
return G.div(bsize*ch*r*c)