-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathghrts_smooth.m
130 lines (124 loc) · 3.7 KB
/
ghrts_smooth.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
function [M,P,D] = ghrts_smooth(M,P,f,Q,f_param,p,same_p)
% GHRTS_SMOOTH - Additive form Gauss-Hermite Rauch-Tung-Striebel smoother
%
% Syntax:
% [M,P,D] = GHRTS_SMOOTH(M,P,f,Q,[f_param,p,same_p])
%
% In:
% M - NxK matrix of K mean estimates from Gauss-Hermite Kalman filter
% P - NxNxK matrix of K state covariances from Gauss-Hermite filter
% f - Dynamic model function as a matrix A defining
% linear function f(x) = A*x, inline function,
% function handle or name of function in
% form a(x,param) (optional, default eye())
% Q - NxN process noise covariance matrix or NxNxK matrix
% of K state process noise covariance matrices for each step.
% f_param - Parameters of f(.). Parameters should be a single cell array,
% vector or a matrix containing the same parameters for each
% step, or if different parameters are used on each step they
% must be a cell array of the format { param_1, param_2, ...},
% where param_x contains the parameters for step x as a cell
% array, a vector or a matrix. (optional, default empty)
% p - Degree on approximation (number of quadrature points)
% same_p - If set to '1' uses the same parameters on every time step
% (optional, default 1)
%
% Out:
% M - Smoothed state mean sequence
% P - Smoothed state covariance sequence
% D - Smoother gain sequence
%
% Description:
% Gauss-Hermite Rauch-Tung-Striebel smoother algorithm. Calculate
% "smoothed" sequence from given Kalman filter output sequence by
% conditioning all steps to all measurements.
%
% Example:
% m = m0;
% P = P0;
% MM = zeros(size(m,1),size(Y,2));
% PP = zeros(size(m,1),size(m,1),size(Y,2));
% for k=1:size(Y,2)
% [m,P] = ghkf_predict(m,P,f,Q);
% [m,P] = ghkf_update(m,P,Y(:,k),h,R);
% MM(:,k) = m;
% PP(:,:,k) = P;
% end
% [SM,SP] = ghrts_smooth(MM,PP,f,Q);
%
% See also:
% GHKF_PREDICT, GHKF_UPDATE
% History:
% May 26, 2010 - Updated and fixed some bugs (asolin)
% Aug 5, 2006 - Some variables renamed, description fixed (asolin)
% Copyright (C) 2006 Hartikainen, Särkkä, Solin
%
% $Id: ghrts_smooth.m,v 1.2 2009/07/01 06:34:42 ssarkka Exp $
%
% This software is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% Licence.txt, included with the software, for details.
%%
%
% Check which arguments are there
%
if nargin < 4
error('Too few arguments');
end
if nargin < 5
f_param = [];
end
if nargin < 6
p = [];
end
if nargin < 7
same_p = 1;
end
%
% Apply defaults
%
if isempty(f)
f = eye(size(M,1));
end
if isempty(Q)
Q = zeros(size(M,1));
end
if isempty(p)
p = 10;
end
%
% Extend Q if NxN matrix
%
if size(Q,3)==1
Q = repmat(Q,[1 1 size(M,2)]);
end
%
% Run the smoother
%
D = zeros(size(M,1),size(M,1),size(M,2));
if isempty(f_param)
for k=(size(M,2)-1):-1:1
tr_param = {p};
[m_pred,P_pred,C] = gh_transform(M(:,k),P(:,:,k),f,f_param,tr_param);
P_pred = P_pred + Q(:,:,k);
D(:,:,k) = C / P_pred;
M(:,k) = M(:,k) + D(:,:,k) * (M(:,k+1) - m_pred);
P(:,:,k) = P(:,:,k) + D(:,:,k) * (P(:,:,k+1) - P_pred) * D(:,:,k)';
end
else
for k=(size(M,2)-1):-1:1
if isempty(f_param)
params = [];
elseif same_p
params = f_param;
else
params = f_param{k};
end
tr_param = {p};
[m_pred,P_pred,C] = gh_transform(M(:,k),P(:,:,k),f,params,tr_param);
P_pred = P_pred + Q(:,:,k);
D(:,:,k) = C / P_pred;
M(:,k) = M(:,k) + D(:,:,k) * (M(:,k+1) - m_pred);
P(:,:,k) = P(:,:,k) + D(:,:,k) * (P(:,:,k+1) - P_pred) * D(:,:,k)';
end
end