-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathckf_predict.m
77 lines (71 loc) · 1.83 KB
/
ckf_predict.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
function [M,P] = ckf_predict(M,P,f,Q,f_param)
% CKF_PREDICT - Cubature Kalman filter prediction step
%
% Syntax:
% [M,P] = CKF_PREDICT(M,P,[f,Q,f_param])
%
% In:
% M - Nx1 mean state estimate of previous step
% P - NxN state covariance of previous step
% f - Dynamic model function as a matrix A defining
% linear function f(x) = A*x, inline function,
% function handle or name of function in
% form f(x,param) (optional, default eye())
% Q - Process noise of discrete model (optional, default zero)
% f_param - Parameters of f (optional, default empty)
%
% Out:
% M - Updated state mean
% P - Updated state covariance
%
% Description:
% Perform additive form spherical-radial cubature Kalman filter (CKF)
% prediction step.
%
% Function f(.) should be such that it can be given a
% DxN matrix of N sigma Dx1 points and it returns
% the corresponding predictions for each sigma
% point.
%
% See also:
% CKF_UPDATE, CRTS_SMOOTH, CKF_TRANSFORM, SPHERICALRADIAL
%
% References:
% Arasaratnam and Haykin (2009). Cubature Kalman Filters.
% IEEE Transactions on Automatic Control, vol. 54, no. 5, pp.1254-1269
% Copyright (c) 2010 Arno Solin
%
% This software is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% Licence.txt, included with the software, for details.
%%
%
% Check which arguments are there
%
if nargin < 2
error('Too few arguments');
end
if nargin < 3
f = [];
end
if nargin < 4
Q = [];
end
%
% Apply defaults
%
if isempty(f)
f = eye(size(M,1));
end
if isempty(Q)
Q = zeros(size(M,1));
end
%
% Do transform and add process noise
%
if nargin < 5
[M,P] = ckf_transform(M,P,f);
else
[M,P] = ckf_transform(M,P,f,f_param);
end
P = P + Q;