-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexp_orcdf.py
180 lines (153 loc) · 8.8 KB
/
exp_orcdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import torch
import numpy as np
import argparse
import sys
import os
import wandb as wb
from pprint import pprint
from inscd import listener
from inscd.datahub import DataHub
from inscd.models.static.graph import ORCDF
from inscd.models.static.neural import KANCD
from inscd.models.static.neural import NCDM
from inscd.models.static.neural import KSCD
from inscd.models.static.graph import LIGHTGCN
from inscd.models.static.graph import RCD
from inscd.models.static.neural import CDMFKC
from inscd.models.static.classic import MIRT
def set_seeds(seed: int):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# os.environ["WANDB_MODE"] = "offline"
parser = argparse.ArgumentParser()
parser.add_argument('--method', default='orcdf', type=str,
help='ORCDF: An Oversmoothing-Resistant Cognitive Diagnosis Framework for Student Learning in Online Education Systems', required=True)
parser.add_argument('--data_type', default='junyi', type=str, help='benchmark', required=True)
parser.add_argument('--test_size', default=0.2, type=float, help='test size of benchmark', required=True)
parser.add_argument('--epoch', type=int, help='epoch of method', default=10)
parser.add_argument('--seed', default=0, type=int, help='seed for exp', required=True)
parser.add_argument('--dtype', default=torch.float64, help='dtype of tensor')
parser.add_argument('--device', default='cuda', type=str, help='device for exp')
parser.add_argument('--gcn_layers', type=int, help='numbers of gcn layers')
parser.add_argument('--latent_dim', type=int, help='dimension of hidden layer', default=32)
parser.add_argument('--batch_size', type=int, help='batch size of benchmark', default=1024)
parser.add_argument('--exp_type', help='experiment type', default='cdm')
parser.add_argument('--lr', type=float, help='learning rate', default=5e-4)
parser.add_argument('--if_type', type=str, help='interaction type')
parser.add_argument('--keep_prob', type=float, default=1.0, help='edge drop probability')
parser.add_argument('--noise_ratio', type=float, help='the proportion of noise which added into response logs')
parser.add_argument('--weight_decay', type=float)
parser.add_argument('--ssl_temp', type=float, default=3)
parser.add_argument('--ssl_weight', type=float, default=3e-3)
parser.add_argument('--flip_ratio', type=float, default=0.05)
parser.add_argument('--mode', type=str, default='')
config_dict = vars(parser.parse_args())
method_name = config_dict['method']
if config_dict['method'] == 'orcdf':
mode = f'-w|o-{config_dict["mode"]}' if config_dict["mode"] != 'all' else ''
method_name += '-' + config_dict['if_type'] + mode
if config_dict['mode'] != 'all':
config_dict['method'] = config_dict['method'] + f'-w|o-{config_dict["mode"]}'
elif config_dict['method'] == 'lightgcn' or config_dict['method'] == 'rcd':
method_name += '-' + config_dict['if_type']
name = f"{method_name}-{config_dict['data_type']}-seed{config_dict['seed']}"
tags = [config_dict['method'], config_dict['data_type'], str(config_dict['seed'])]
config_dict['name'] = name
method = config_dict['method']
datatype = config_dict['data_type']
if config_dict.get('if_type', None) is None:
config_dict['if_type'] = config_dict['method']
if 'orcdf' in method:
if config_dict.get('weight_reg') is None:
config_dict['weight_reg'] = 0.05
pprint(config_dict)
run = wb.init(project="orcdf", name=name,
tags=tags,
config=config_dict)
config_dict['id'] = run.id
def main(config):
def print_plus(tmp_dict, if_wandb=True):
pprint(tmp_dict)
if if_wandb:
wb.log(tmp_dict)
listener.update(print_plus)
set_seeds(config['seed'])
datahub = DataHub(f"datasets/{config['data_type']}")
if config['exp_type'] == 'cat':
train_student_num = datahub.group_split(source="total", to=["train", "other"], seed=1, slice_out=0.7)
valid_student_num = datahub.group_split(source="other", to=["valid", "test"], seed=1, slice_out=1 - 1 / 3)
concept_map = datahub.get_concept_map()
else:
datahub.random_split(source="total", to=["train", "test"], seed=config['seed'],
slice_out=1 - config['test_size'])
if config['exp_type'] != 'cdm':
if config['exp_type'] == 'gnn':
validate_metrics = ['auc', 'acc', 'ap', 'rmse', 'f1', 'doa', 'mad']
else:
validate_metrics = ['auc', 'acc', 'ap', 'rmse', 'f1', 'doa']
else:
if config['if_type'] != 'irt' and config['if_type'] != 'mirt':
validate_metrics = ['auc', 'acc', 'ap', 'rmse', 'f1', 'doa', 'mad']
else:
validate_metrics = ['auc', 'acc', 'ap', 'rmse', 'f1', 'mad']
print("Number of response logs {}".format(len(datahub)))
if config.get('noise_ratio', None) is not None:
datahub.add_noise(config['noise_ratio'], "train")
if 'orcdf' in config['method']:
if config['if_type'] == 'kancd' or config['if_type'] == 'mirt' or config['if_type'] == 'kscd' or config[
'if_type'] == 'irt':
config['mode'] = 'tf' + config['mode']
# if config['if_type'] == 'ncd' or config['if_type'] == 'cdmfkc':
# config['epoch'] =
orcdf = ORCDF(datahub.student_num, datahub.exercise_num, datahub.knowledge_num)
orcdf.build(latent_dim=config['latent_dim'], device=config['device'], if_type=config['if_type'],
gcn_layers=config['gcn_layers'], keep_prob=config['keep_prob'],
dtype=config['dtype'], ssl_weight=config['ssl_weight'], ssl_temp=config['ssl_temp'],
flip_ratio=config['flip_ratio'], mode=config['mode'])
orcdf.train(datahub, "train", "test", valid_metrics=validate_metrics,
batch_size=config['batch_size'], epoch=config['epoch'], lr=config['lr'],
weight_decay=config['weight_decay'])
elif config['method'] == 'kancd':
kancd = KANCD(datahub.student_num, datahub.exercise_num, datahub.knowledge_num)
kancd.build(32, device=config['device'])
kancd.train(datahub, "train", "test", valid_metrics=validate_metrics, batch_size=config['batch_size'],
epoch=config['epoch'], weight_decay=0, lr=4e-3)
elif config['method'] == 'ncdm':
ncdm = NCDM(datahub.student_num, datahub.exercise_num, datahub.knowledge_num)
ncdm.build(device=config['device'])
ncdm.train(datahub, "train", "test", valid_metrics=validate_metrics, batch_size=config['batch_size'],
epoch=config['epoch'], weight_decay=0, lr=4e-3)
elif config['method'] == 'mirt':
mirt = MIRT(datahub.student_num, datahub.exercise_num, datahub.knowledge_num)
mirt.build(latent_dim=32, device=config['device'], if_type='sum')
mirt.train(datahub, "train", "test", valid_metrics=validate_metrics, batch_size=config['batch_size'],
lr=4e-3, weight_decay=0, epoch=config['epoch'])
elif config['method'] == 'irt':
mirt = MIRT(datahub.student_num, datahub.exercise_num, datahub.knowledge_num)
mirt.build(latent_dim=1, device=config['device'], if_type='sub')
mirt.train(datahub, "train", "test", valid_metrics=validate_metrics, batch_size=config['batch_size'],
lr=4e-3, weight_decay=0, epoch=config['epoch'])
elif config['method'] == 'kscd':
kscd = KSCD(datahub.student_num, datahub.exercise_num, datahub.knowledge_num)
kscd.build(latent_dim=32, device=config['device'], dtype=torch.float64)
kscd.train(datahub, "train", "test", valid_metrics=validate_metrics, batch_size=config['batch_size'],
weight_decay=0, epoch=config['epoch'], lr=4e-3)
elif config['method'] == "lightgcn":
lightgcn = LIGHTGCN(datahub.student_num, datahub.exercise_num, datahub.knowledge_num)
lightgcn.build(device=config['device'], if_type=config['if_type'], gcn_layers=3,
dtype=torch.float64)
lightgcn.train(datahub, "train", "test", valid_metrics=validate_metrics,
batch_size=config['batch_size'], lr=4e-3, weight_decay=0)
elif config['method'] == 'rcd':
rcd = RCD(datahub.student_num, datahub.exercise_num, datahub.knowledge_num)
rcd.build(device=config['device'], if_type=config['if_type'], dtype=torch.float64)
rcd.train(datahub, "train", "test", valid_metrics=validate_metrics,
batch_size=config['batch_size'], weight_decay=0, lr=4e-3)
elif config['method'] == 'cdmfkc':
cdmfkc = CDMFKC(datahub.student_num, datahub.exercise_num, datahub.knowledge_num)
cdmfkc.build(device=config['device'], dtype=torch.float64)
cdmfkc.train(datahub, "train", "test", valid_metrics=validate_metrics, batch_size=config['batch_size'],
weight_decay=0, epoch=config['epoch'], lr=4e-3)
if __name__ == '__main__':
sys.exit(main(config_dict))